Síntesis de nanopartículas bimetálicas soportadas para su aplicación en la reducción electroquímica de iones nitratos
Fecha
2023Autor
Zurita, Noelia
Director
García, Silvana GracielaPalabras clave
Ingeniería química; Electrocatálisis; Nitratos; Nanopartículas bimetálicas; ElectrodeposiciónMetadatos
Mostrar el registro completo del ítemResumen
Durante la presente Tesis se estudió el proceso de formación por
electrodeposición y caracterización de nanopartículas constituidas por uno y dos
metales, y sus propiedades electrocatalíticas hacia la reacción de reducción de
iones nitrato. Los sistemas estudiados fueron estructuras de Cu, Cd y Cu/Cd
soportadas sobre sustratos carbonosos de CV y HOPG. Las mismas fueron
obtenidas a partir de soluciones acuosas conteniendo los iones de dichos
metales empleando técnicas electroquímicas convencionales y caracterizadas
mediante microscopía AFM ex-situ, SEM-EDX y XPS.
Inicialmente, se analizó el proceso de nucleación y crecimiento del Cu sobre SC.
Se demostró que la cinética de electrodeposición de Cu sobre los sustratos en
los distintos electrolitos soporte analizados, sigue un mecanismo de nucleación
sobre sitios activos y crecimiento de cristales controlado por difusión. Se
encontró que, con el empleo de Na2SO4, el proceso de reducción comienza a
valores más positivos de potencial. Para el sustrato de CV se evidenciaron dos
procesos catódicos, con la formación de iones Cu+ como especies intermedias.
Las imágenes de SEM y AFM mostraron partículas de Cu distribuidas al azar,
presentando distinta morfología sobre ambos sustratos.
Se determinó la factibilidad de formar partículas bimetálicas Cd-Cu por
electrodeposición secuencial de ambos metales a partir de las diferentes
soluciones conteniendo los respectivos iones. Los resultados
voltamperométricos evidenciaron la existencia del fenómeno de deposición a
subpotencial para el Cd sobre los distintos electrodos modificados NPsCu/SC.
Los espectros de desorción de los sistemas bimetálicos generados mostraron
picos de disolución en valores de potencial asociados a la formación de distintas
fases aleadas Cu-Cd, resultados que fueron respaldados mediante el análisis
por XPS y a partir de los estudios teóricos basados en DFT.
Posteriormente, se evaluó el desempeño de las nanoestructuras formadas como
electrocatalizadores para la reacción de reducción de iones nitratos.
Inicialmente, se encontró un mejor efecto catalítico de los sistemas
NPsCu/HOPG cuando fueron generados a partir de soluciones que contienen
Na2SO4 y H2SO4 como electrolito soporte, en forma individual, en comparación
con las formadas con la solución combinada. Seguidamente, se compararon los
sistemas análogos sobre CV y se determinó que los depósitos formados a partir
de Na2SO4 presentaron mejores resultados sobre HOPG, y los generados a
partir de H2SO4 obtuvieron corrientes de reducción máxima similares para los
dos sustratos.
Por otra parte, los sistemas compuestos por nanopartículas bimetálicas Cu-Cd
sobre los sustratos carbonosos también fueron implementados como electrodos
para la reacción de iones nitratos. Los mismos mostraron resultados
superadores a los sistemas compuestos por los metales en forma individual,
evidenciando el efecto sinérgico de ambos metales.
Con el propósito de determinar la posible utilización de las estructuras
bimetálicas en la medición de la concentración de iones nitratos en solución se
midió, a partir de experiencias voltamperométricas, la corriente obtenida en el
pico de reducción asociado a la reacción de interés, en medios con distintas
concentraciones de NO3-. Se obtuvo, para los diferentes sistemas SC/Cu-Cd,
una muy buena linealidad de la corriente de pico catódico con la concentración
de nitratos en el rango de concentraciones analizado. During the present Thesis, the electrochemical formation process and
characterization of nanoparticles constituted by one and two metals, and their
electrocatalytic properties towards the reduction reaction of nitrate ions, were
studied. The systems were Cu, Cd and Cu/Cd structures supported on CV and
HOPG carbonaceous substrates. They were obtained from aqueous solutions
containing the ions of the corresponding metals using conventional
electrochemical techniques and characterized by ex-situ AFM microscopy, SEM-
EDX and XPS.
Initially, the nucleation and growth process of Cu on HOPG and CV was
analyzed. It was shown that the electrodeposition kinetics of Cu on the substrates
in the different supporting electrolytes analyzed, follows a nucleation mechanism
on active sites and crystal growth controlled by diffusion. It was found that, with
the use of Na2SO4, the reduction process begins at more positive potential
values. In the case of CV substrate, two cathodic processes were evidenced,
with the formation of Cu+ ions as intermediate species. The SEM and AFM
images showed Cu particles randomly distributed, presenting different
morphology on both substrates.
The feasibility of forming Cd-Cu bimetallic particles by sequential
electrodeposition of both metals from the different solutions containing the
respective ions, was determined. The voltammetric results evidenced the
existence of the Cd underpotential deposition phenomenon on the different
modified CS/Cu electrodes. The desorption spectra of the generated bimetallic
systems showed dissolution peaks at potential values associated with the
formation of different Cu-Cd alloyed phases, results that were supported by the
XPS analysis and from theoretical studies based on DFT.
Subsequently, the performance of the formed nanostructures was evaluated as
electrocatalysts for the nitrate ion reduction reaction. Initially, a better catalytic
effect of the NPsCu/HOPG systems was found when they were generated from
solutions containing Na2SO4 and H2SO4 as supporting electrolyte, individually,
compared to those formed with the combined solution. Afterwards, the
analogous systems on VC were compared and it was determined that the
deposits formed from Na2SO4 presented better results on HOPG, however, those
generated from H2SO4 as supporting electrolyte obtained similar maximum
reduction currents for the two substrates.
On the other hand, the systems composed of Cu-Cd bimetallic nanoparticles on
carbonaceous substrates were also implemented as electrodes for the nitrate ion
reaction. They showed superior results with respect to the systems composed of
the individual metals, evidencing the synergistic effect of both metals.
With the purpose of determining the possible use of the bimetallic structures in
the measurement of the concentration of nitrate ions in solution, the current
obtained in the reduction peak associated with the reaction of interest was
measured in solutions with different NO3- concentrations. It was obtained a very
good linearity of the cathodic peak current with the nitrate concentration for the
different CS/Cu-Cd systems in the range of concentrations analysed.
Colecciones
- Tesis de postgrado [1417]