Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodigital.uns.edu.ar/handle/123456789/591
Título : Un estudio algebraico en subvariedades de reticulados residuados y sus subreductos implicativos
Autor(es) : Castaño, Diego Nicolás
Director(es) : Díaz Varela, José Patricio
Palabras clave : Matemáticas; Retículos, teoría de; Álgebra
Resumen : Abordamos diferentes problemas algebraicos en la variedad de los reticulados residuados integrales, conmutativos y acotados, así como tambi´en en la variedad de las álgebras de implicación de Lukasiewicz (subreductos implicativos de las MV-álgebras). Damos una construcción que permite sumergir todo hoop de Wajsberg en una MV- álgebra y la utilizamos para desarrollar dualidades topológicas para ciertas clases de hoops de Wajsberg y para caracterizar los hoops de Wajsberg k-valuados libres. Estudiamos la descomponibilidad de las álgebras libres para diferentes subvariedades de reticulados residuados, probando la indescomponibilidad en ciertos casos y caracterizando las subvariedades de reticulados residuados pseudocomplementados que poseen sus álgebras libres descomponibles. Estudiamos tambi´en los elementos regulares de un reticulado residuado, introduciendo la noción de variedad regular y estableciendo sus conexiones con la traducción negativa de Kolmogorov. Obtenemos una representaci´on sencilla de las álgebras de implicación de Lukasiewicz finitas como crecientes en productos de MV-cadenas finitas y damos una dualidad topol ógica intr´ınseca para las álgebras de implicación. Caracterizamos la permutabilidad de congruencias en dichas álgebras, probamos que todas las subcuasivariedades son variedades y mostramos que todos los miembros finitos de esta variedad son débilmente proyectivos. Estudiamos tambi´en las clases algebraicamente expandibles en esta variedad, así como también las funciones algebraicas, especialmente para la subvariedad generada por la cadena de tres elementos.
We deal with different algebraic problems in the variety of integral, commutative, bounded residuated lattices, as well as in the variety of Lukasiewicz implication algebras (implicative subreducts of MV-algebras). We give a construction that allows us to embed anyWajsberg hoop into an MV-algebra and use it to develop topological dualities for certain classes of Wajsberg hoops and to characterize the free k-valued Wajsberg hoops. We study the decomposability of free algebras in different subvarieties of residuated lattices, establishing the indecomposability for some cases and characterizing the subvarieties of pseudocomplemented residuated lattices whose free algebras are decomposable. We also study the regular elements of a residuated lattices, introducing the notion of regular variety and establishing connections with the negative Kolmogorov translation. We obtain a simple representation of finite Lukasiewicz implication algebras as upsets in products of finite MV-chains and give an intrinsic topological duality for implication algebras. We characterize congruence permutability for these algebras, prove that any subquasivariety is a variety and show that every finite member of this variety is weakly projective. We also study algebraically expandable classes in this variety, as well as algebraic functions, especially for the subvariety generated by the three-element chain.
URI : http://repositoriodigital.uns.edu.ar/handle/123456789/591
Aparece en las colecciones: Tesis de postgrado

Ficheros en este ítem:
Fichero Tamaño Formato  
Tesis Doctoral - Diego Nicolás Castaño.pdf783,67 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.