Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodigital.uns.edu.ar/handle/123456789/4443
Título : Metodologías robustas de reconciliación de datos y tratamiento de errores sistemáticos
Autor(es) : Llanos, Claudia Elizabeth
Director(es) : Sánchez, Mabel Cristina
Palabras clave : Ingeniería Química; Plantas químicas; Reconciliación robusta; Análisis de errores; Detección errónea; Estadística robusta
Resumen : La operación de las plantas químicas actuales se caracteriza por la necesidad de introducir cambios rápidos y de bajo costo con el fin de mejorar su rentabilidad, cumplir normas medioambientales y de seguridad, y obtener un producto final de una especificación dada. Con este propósito es esencial conocer el estado actual del proceso, el cual se infiere a partir de las mediciones y del modelo que lo representa. A pesar de los recientes avances en la fabricación de instrumentos, las mediciones siempre presentan errores aleatorios y en ocasiones también contienen errores sistemáticos. El empleo de los valores de las mediciones sin tratamiento puede ocasionar un deterioro significativo en el funcionamiento de la planta, de allí la importancia de aplicar metodologías que conviertan los datos obtenidos por los sensores en información confiable. La Reconciliación de Datos Clásica es una técnica probada que permite reducir los errores aleatorios de las mediciones. Con esta metodología se obtienen estimaciones más precisas de las observaciones, que son consistentes con el modelo. Sin embargo la presencia de errores sistemáticos invalida su base estadística, por lo que éstos deben ser detectados, identificados, y estimados o eliminados antes de aplicarla. Para evitar estos inconvenientes, se propusieron estrategias de Reconciliación de Datos Robusta (RDR) que son insensibles a una cantidad moderada de Errores Sistemáticos Esporádicos (ESE), dado que reemplazan la función Cuadrados Mínimos por un M-estimador. En esta tesis se presentan nuevas metodologías de RDR que combinan las bondades de los M-estimadores monótonos y redescendientes. Se desarrolla un Método Simple que proporciona buenas estimaciones para las mediciones reconciliadas, y su carga computacional es baja debido a que se lo inicializa con una mediana robusta de las observaciones. Por otra parte, se formula el Test Robusto de las Mediciones (TRM) que utiliza la redundancia temporal provista por un conjunto de observaciones, y consigue detectar e identificar mediciones atípicas en variables con redundancia espacial nula, y con un porcentaje de aciertos idéntico al de las variables medidas redundantes. Esto es un notable avance en las técnicas de Detección de ESE pues independiza la capacidad de detección de la redundancia espacial. Además, el TMR permite identificar las variables con ESE en sistemas complejos, como procesos con corriente paralelas o variables equivalentes. En los mismos se logran aislar variables problemáticas sin generar falsas alarmas o perder capacidad de detección. Con lo cual se aborda un problema cuya solución estaba pendiente hasta el momento. El efecto de la presencia de ESE puede ser contrarrestado por la RDR. No obstante, existen Errores Sistemáticos que Persisten en el Tiempo (ESPT), las estimaciones se ven deterioradas. En tal sentido, se presenta una nueva metodología para la detección y clasificación de ESPT basada en la técnica de Regresión Lineal Robusta y un procedimiento para el tratamiento integral de los errores sistemáticos que mejora significativamente la exactitud de las estimaciones de las variables. Las estrategias propuestas en esta tesis han sido probadas satisfactoriamente en un proceso de mayor escala correspondiente a una planta de biodiésel. Se concluye que la correcta aplicación de la Estadística Robusta al procesamiento de datos permite desarrollar estrategias que proveen estimaciones insesgadas de las variables de proceso, con resultados reproducibles y aplicables a otros sistemas.
Nowadays, chemical plants need to introduce fast and low-cost changes in the operation to enhance their profitability, to satisfy environmental and safety regulations, and to obtain a final product of a certain quality. With this purpose, it is essential to know the current process state, which is estimated using the measurements and the model that represents its operation. Despite the recent improvements in instruments manufacturing, measurements are always corrupted with random errors, and sometimes they also are contaminated with systematic ones. The use of untreated observations is detrimental for plant operation; therefore, it is important to apply strategies that transform the data given by sensors in reliable information. The Classic Data Reconciliation (RDC) is a well-known technique that reduces the effect of random measurement errors. It provides more precise estimates of the observations, which are consistent with the process model. But the presence of systematic errors invalidates the statistical basis of that procedure. Therefore, those errors should be detected, identified, and estimated or eliminated before the application of RDC. To avoid this problem, Robust Data Reconciliation (RDR) strategies have been proposed, whose behavior is not affected by the presence of a moderate quantity of Sporadic Systematic Errors (ESE). They replace the Least Square Function by an M-estimator. In this thesis, two RDR methodologies are presented which combine the advantages of monotone and redescendent M-estimators. The Simple Method is proposed, which provides unbiased estimates of the reconciled measurements. Its computation requirement is low because the procedure is initialized using a robust estimate of the observation median. Furthermore, the Robust Measurement Test (TRM) is proposed. It uses the temporal redundancy provided by a set of measurements, and allows the detection and identification of atypical observations for measured variables which have null spatial-redundancy. Their identification percentages are similar to those obtained for the redundant measured ones. This a great advance in the ESE Detection area because for the new method the detection does not depend on the spatial-redundancy. Even more, TMR allows to identify ESE for complex systems, such as processes which have parallel streams and equivalent set of measurements. It isolates the measurements with ESE at a low rate of false alarms and high detection percentages. This has provided a solution to a subject unsolved until now. Even though the detrimental effect of ESE can be reduced by the RDR, the presence of Systematic Errors that Persist in Time (ESPT) deteriorates variable estimates. In this sense, a new methodology is presented to detect the ESPT, and classify them using the Linear Robust Regression Technique. Also the treatment of all systematic errors is tackled using a comprehensive procedure that significantly enhances the accuracy of variable estimates. The strategies proposed in this thesis have been satisfactorily proved for a plant of biodiesel production. It can be concluded that the right application of concepts from Robust Statistic to process data analysis allows to develop techniques which provide unbiased estimates, are reproducible and can be applied to other systems.
URI : http://repositoriodigital.uns.edu.ar/handle/123456789/4443
Aparece en las colecciones: Tesis de postgrado

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TESIS_LLANOS_VF.pdfTesis doctoral - Texto completo9,23 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons