Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodigital.uns.edu.ar/handle/123456789/4130
Título : Algoritmos no monótonos de región de confianza y filtros para optimización no lineal
Autor(es) : Mendonça, María de Gracia
Director(es) : Maciel, María Cristina
Palabras clave : Matemáticas; Algoritmos; Optimización no lineal; Optimización matemática; Algoritmo no monótono; Filtros; Región de confianza
Resumen : Un algoritmo para problemas de optimización no lineal con restricciones de igualdad y de caja es presentado. En el marco del método de programación cuadrática secuencial, con una estrategia de globalización de región de con- fianza, se evita el uso de parámetros de penalización en funciones de mérito mediante el uso de un filtro inclinado con memoria. Los subproblemas de región de cofianza son resueltos mediante el uso del método de gradiente espectral proyectado (SPG), un método no monótono para problemas convexos de gran escala. El paso de prueba es evaluado mediante una condición no monótona sobre el Lagrangiano de la función objetivo, que puede ser considerado una generalización de la condición de fracción decrecimiento de Cauchy y la condición no monótona para búsqueda lineal de Grippo, Lampariello y Lucidi. Las propiedades de buena definición y convergencia global del algoritmo son analizadas bajo hipótesis estándar para problemas de optimización no lineal con restricciones de igualdad y de caja, basados en una estrategia de región de cofianza. Resultados numéricos son reportados para validar la eficiencia y robustez del algoritmo en problemas de variado tama~no, y un problema de ajuste de observaciones con ruido a una solución de una ecuación diferencial de segundo orden, que genera un problema no diferenciable. La condición de decrecimiento no monótona es comparada con la tradicional condición monótona mediante perfiles de rendimiento.
An algorithm based on nonmonotone trust-region- lter method for a nonlinear problem with equality and box constraints is presented. In the frame of sequential quadratic programming with a strategy for global convergence based on the trust region approach the use of a slanting lter with memory avoid the pitfalls of penalty parameters of merit functions. The trust region subproblems are solved by the Spectral Projected Gradient (SPG), a nonmonotone method for large-scale convex constrained problems. The trial step is evaluated by a nonmonotone condition in the Lagrangian of the objetive function, which can be considered not only a generalization of the fraction of Cauchy decrease condition, but also a generalization of the nonmonotone line search proposed by Grippo, Lampariello y Lucidi. Well definition and global convergence properties are analyzed under mild conditions for the non linear problems with equality and box restrictions based on trust region. Numerical results are reported to validate the robustness and eficiency of the algorithm on varied size test problems, and for fit a set of noisy observations to a second order diferential equation solution wich generate a non diferential problem. The nonmonotone rule is compared to the traditional monotone rule through performance profiles.
URI : http://repositoriodigital.uns.edu.ar/handle/123456789/4130
Aparece en las colecciones: Tesis de postgrado

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Thesis.pdfTesis doctoral - Texto completo1,37 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons