Mostrar el registro sencillo del ítem
Efectos degenerativos inducidos por la cianotoxina β-N-metilamino-L-alanina (BMAA) en células de retina
dc.contributor.advisor | German, Olga Lorena | |
dc.contributor.author | Soto, Tamara B. | |
dc.contributor.other | Politi, Luis E. | |
dc.date | 2023-07-07 | |
dc.date.accessioned | 2023-11-21T16:57:02Z | |
dc.date.available | 2023-11-21T16:57:02Z | |
dc.date.issued | 2023 | |
dc.identifier.other | 2023-1892 | es_AR |
dc.identifier.uri | https://repositoriodigital.uns.edu.ar/handle/123456789/6571 | |
dc.description.abstract | La cianotoxina β-N-metil-amino-L-alanina (BMAA) es un aminoácido no proteico producido por cianobacterias, capaz de biomagnificarse en las cadenas tróficas de ecosistemas marinos y terrestres. Dada su capacidad de atravesar la barrera hematoencefálica, su ingesta progresiva se asocia con el desarrollo de ciertas retinopatías, así como también de enfermedades neurodegenerativas, tales como la Esclerosis Lateral Amiotrófica (ELA), la Enfermedad de Parkinson (EP) y la Enfermedad de Alzheimer (EA). Los daños causados por la BMAA son múltiples y originados en mecanismos diversos. Así, la BMAA, en presencia de iones bicarbonato (HCO3 - ), puede formar un compuesto denominado carbamato, cuya estructura química es similar al glutamato (Glut), uno de los neurotransmisores más importantes del sistema nervioso. A su vez, el carbamato se une y activa receptores de Glut, ya sean ionotrópicos (como el receptor de N-metil-D- aspartato) o metabotrópicos. La sobreexcitación de estos receptores ocasionada por la BMAA, promueve mecanismos de excitotoxicidad que conducen a alteraciones neuronales. Por otro lado, la BMAA puede ingresar a las células a través del sistema xc, un sistema de transporte sodio-independiente común para cistina y Glut. Una vez en el interior celular, la toxina puede incorporarse erróneamente en las cadenas polipeptídicas en reemplazo de Serina (Ser). Así, unida a componentes proteicos, puede generar un reservorio endógeno de lenta liberación que expone a las neuronas a una baja pero continua dosis de esta toxina. Entre sus varios efectos subcelulares, la BMAA puede afectar la permeabilidad de las membranas mitocondriales comprometiendo su actividad. Además, puede inducir modificaciones en los niveles de Ca 2+, generar estrés oxidativo, promover fallas en la producción de ATP e inducir estrés en el retículo endoplasmático, lo cual conduce a alteraciones en la síntesis y/o distribución de proteínas. Asociado a esto, se originan alteraciones en el transporte axonal y la fragmentación de estas estructuras. Pese a su trascendencia para la salud, aún son desconocidos los efectos directos que genera la exposición a la BMAA de las neuronas y células gliales de la retina (como las células gliales de Müller –CGM-), o del epitelio pigmentario de la retina (EPR). Además, todavía son mayormente desconocidos aquellos factores o moléculas capaces de modular las vías de señalización involucradas en los efectos deletéreos inducidos por la BMAA. Al respecto, recientemente se ha propuesto que la activación de los receptores X retinoides (RXR) protegerían a las neuronas y modularían la respuesta inflamatoria durante las enfermedades neurodegenerativas del sistema nervioso central, y también en retinopatías. Aún se desconoce si estos receptores ejercen un rol protector contra los daños inducidos por la BMAA. En esta Tesis se estudiaron los mecanismos involucrados en los cambios degenerativos inducidos por la BMAA en células de la retina, así como también en células PC12 diferenciadas a neuronas. Asimismo, se evaluó el valor protector de agonistas de los RXRs frente a los efectos deletéreos inducidos por la BMAA en células de la retina. Para estos estudios, se obtuvieron cultivos puros de neuronas amacrinas y fotorreceptores (FRs), de CGM puros, y cultivos neuro-gliales a partir de retinas de ratas neonatas. Además, se utilizaron cultivos de líneas celulares PC12 y epiteliales ARPE- 19. Todos los cuales fueron tratados con la BMAA para evaluar sus efectos sobre estas células y el posible rol protector de los RXRs. Los resultados obtenidos en este trabajo demostraron que aún bajas concentraciones de la BMAA (de 0,4 μM) alteraron la viabilidad no sólo de las neuronas amacrinas y FRs, sino también de las células PC12 diferenciadas a neuronas, de las CGM e incluso de las células del EPR. La BMAA también, indujo alteraciones en la permeabilidad mitocondrial y en la producción de ROS en las células neuronales, gliales y epiteliales, mientras que en las CGM indujo cambios en la morfología nuclear. Por su parte, en neuronas amacrinas, promovió el crecimiento axonal, aunque generando el colapso de sus conos de crecimiento. Estas alteraciones fueron mediadas por la activación de los receptores NMDA en presencia de iones HCO3 - . Además, en estas células, la BMAA se incorporaría erróneamente en las cadenas polipeptídicas en reemplazo de la Ser, dado que la suplementación del medio de cultivo con este aminoácido previno la toxicidad inducida por la BMAA. En cuanto a la acción protectora de los RXRs, nuestros resultados demostraron que su activación bloqueó los efectos tóxicos que produjo la BMAA sobre las neuronas amacrinas y los FRs, así como también sobre las células del EPR. En resumen, en esta Tesis presentamos evidencias de que la BMAA afecta múltiples estructuras subcelulares en las células que conforman la retina, así como también a células PC12 diferenciadas. Estos resultados sugieren que los daños inducidos por la BMAA representan un potencial riesgo para la salud, y podrían contribuir al desarrollo de retinopatías, así como de varias enfermedades neurodegenerativas. Además, este trabajo indicaría que la activación de los RXRs puede presentar un papel protector al ejercer un rol relevante en la supervivencia de las neuronas amacrinas y FRs, así como también de las células del EPR. En su conjunto, estos hallazgos aportan nuevos conocimientos en relación a los mecanismos deletéreos inducidos por la BMAA y podrían ser de utilidad para el desarrollo de futuras estrategias terapéuticas. | es_AR |
dc.description.abstract | The cyanotoxin β–N-methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid produced by cyanobacteria. It is biomagnified along the food chains in both, marine and terrestrial ecosystems. Due to its ability to cross the brain blood barrier, its ingestion may contribute to the onset of retinopathies, as well as neurodegenerative diseases, like Amyotrophic Lateral Sclerosis, Parkinson (PD) and Alzheimer disease (AD). Damages induced by BMAA are multiple and originated by different mechanisms. In the presence of bicarbonate ions (HCO3 - ), BMAA can produce carbamate, whose chemical structure is similar to that of glutamate (Glut), one of the most important neurotransmitters in the nervous system. In turn, carbamate can bind and activate both ionotropic (like N-Methyl-D-aspartate -NMDA-) and metabotropic Glut receptors. Overactivation of these receptors by BMAA promotes excitotoxicity, which leads to nuclear alterations. On the other hand, BMAA crosses the cell membranes by using the cystine/glutamate antiporter (xc- system), a sodium-independent amino acid transporter. Once inside the cells, the toxin can mistakenly replace the amino acid Serine (Ser) in polypeptide chains, thus generating an endogenous reservoir of BMAA, whose slow- release exposes neurons to a low, but continuous amount of this toxin. Among its various subcellular effects, BMAA can alter mitochondrial membrane permeability compromising mitochondrial activity. Besides, it can alter Ca2+ levels, generate oxidative stress, promote failures in the ATP production and induce endoplasmic reticulum (RE) stress, leading to alterations in the protein synthesis and/or distribution. In this context, BMAA promotes alterations in axonal transport along with fragmentation of these structures. Despite its importance to health, the direct effects of BMAA exposure on retinal neurons and glial cells (such as Müller glial cells –CGM-), or retinal pigment epithelium (RPE) cells, are virtually unknown and the factors or molecules, which could modulate the signaling pathways involved in the deleterious effects induced by BMAA have not been established. In this regard, it has recently been proposed that the activation of Retinoid X Receptors (RXR) can protect neurons and modulate the inflammatory responses during neurodegenerative diseases of the central nervous system, including retinopathies. However, the possible protective roles of RXRs in BMAA-induced damages are still unknown. In this Thesis, we have studied the mechanisms involved in the degenerative changes induced by BMAA into retinal cells, and in neuron-like, differentiated rat pheochromocytoma cells (PC12 cells), as well. We also evaluated the protection of RXR agonists against the deleterious effects of BMAA in retinal cells. For these purposes, we obtained pure neuronal cultures of amacrine neurons and photoreceptors (PHRs); pure MGC cultures, and mixed neuro-glial cultures from newborn rats. In addition, we used PC12 cells and ARPE-19 epithelial cell lines. We treated them with BMAA to evaluate its effects on these cells and the possible protective roles of RXRs. Our results showed that low concentrations of BMAA (0.4 μM) altered, not only the viability of amacrine neurons and PHRs, but also that of neuronally differentiated PC12 cells, MGC and even that of the RPE cells. Also, the cyanotoxin induced alterations in mitochondrial membrane permeability and in ROS production, while in MGC, BMAA induced changes in the nuclear morphology. On the other hand, in amacrine neurons, this toxin promoted axonal growth, although simultaneously generating the collapse of their growth cones. We established that all these alterations were induced by activation of NMDA receptors in the presence of HCO3 - ions. Besides, in all these cell types, BMAA appeared to incorporate into polypeptide chains replacing Ser, since supplementation of the culture media with this amino acid prevented toxicity damages. Regarding the protective roles of RXRs, our results showed that their activation blocked the toxic effects induced by BMAA in amacrine neurons, PHRs, and RPE cells. In summary, in this Thesis we present evidences that BMAA affected multiple subcellular structures in retina cells and in PC12 cells differentiated into neurons. These results suggest that the damaging effects induced by BMAA represent a potential health risk, which could contribute to the development of retinopathies, along with other neurodegenerative diseases. In addition, this work would indicate that RXR activation can promote survival of amacrine PHRs and RPE cells. Taken together, these findings provide new knowledge regarding the deleterious mechanisms induced by BMAA, which could be useful for the development of future effective therapies. | es_AR |
dc.format | application/pdf | es_AR |
dc.format.extent | 125 p. | es_AR |
dc.language.iso | spa | es_AR |
dc.rights | Reconocimiento-NoComercial-SinObraDerivada 4.0 (CC BY-NC-ND 4.0) | es_AR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | es_AR |
dc.subject | Biología | es_AR |
dc.subject | Fotorreceptores | es_AR |
dc.title | Efectos degenerativos inducidos por la cianotoxina β-N-metilamino-L-alanina (BMAA) en células de retina | es_AR |
dc.type | tesis doctoral | es_AR |
bcuns.collection.name | Biblioteca Digital Académica | es |
bcuns.collection.acronym | BDA | es |
bcuns.collection.url | http://tesis.uns.edu.ar/ | es |
bcuns.collection.institution | Biblioteca Central de la Universidad Nacional del Sur | es |
bcuns.depositorylibrary.name | Biblioteca Central de la Universidad Nacional del Sur | es |
bcuns.author.affiliation | Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia | es_AR |
bcuns.author.affiliation | Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca | es_AR |
bcuns.authoraffiliation.acronym | UNS | es_AR |
bcuns.authoraffiliation.acronym | CONICET-INIBIBB | es_AR |
bcuns.authoraffiliation.country | Argentina | es_AR |
bcuns.advisor.affiliation | Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca | es_AR |
bcuns.advisoraffiliation.acronym | CONICET-INIBIBB | es_AR |
bcuns.advisoraffiliation.country | Argentina | es_AR |
bcuns.defense.city | Bahía Blanca | es |
bcuns.defense.province | Buenos Aires | es |
bcuns.defense.country | Argentina | es |
bcuns.programme.name | Doctorado en Biología | es_AR |
bcuns.programme.department | Departamento de Biología, Bioquímica y Farmacia | es_AR |
bcuns.thesisdegree.name | Doctor en Biología | es_AR |
bcuns.thesisdegree.grantor | Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia | es_AR |
uns.type.publicationVersion | accepted | es_AR |
bcuns.contributorother.affiliation | Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca | es_AR |
bcuns.depositarylibrary.acronym | EUN | es |
bcuns.subject.keywords | BMAA | es_AR |
bcuns.subject.keywords | Neuronas amacrinas | es_AR |
bcuns.subject.keywords | Células gliales de Müller | es_AR |
bcuns.subject.keywords | EPR | es_AR |
dcterms.accessRights.openAire | info:eu-repo/semantics/openAccess | es_AR |
bcuns.contributorotheraffiliation.acronym | CONICET-INIBIBB | es_AR |
bcuns.contributorotheraffiliation.country | Argentina | es_AR |
uns.oai.snrd | si | es_AR |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Tesis de postgrado [1424]
Reúne los trabajos finales de los estudios de posgrado de la UNS (especializaciones, maestrías y doctorados)