Síntesis y caracterización de partículas magnéticas para su aplicación en biotecnología
Fecha
2017Autor
Nicolás, Paula
Director
Ferreira, María LujánColaborador
Lassalle, Verónica L.Palabras clave
Tecnología de los materiales; Biotecnología; Nanopartículas; Biocatálisis; Magnetita; CALB (Lipasa B de candida antarctica)Metadatos
Mostrar el registro completo del ítemResumen
La presente tesis estudia dos líneas de investigación paralelas y complementarias: por un lado, la síntesis de partículas de magnetita mediante el método de co-precipitación en presencia de surfactantes; por otro lado el diseño de biocatalizadores a base de la lipasa B de Candida Antarctica (CALB) y soportes magnéticos. La CALB ha sido estudiada en profundidad por el grupo de biocatálisis del instituto PLAPIQUI a lo largo de varios años. La performance de los biocatalizadores obtenidos fue testeada en la reacción de esterificación de ácido oleico con etanol sin solvente.
El capítulo I introduce los conceptos básicos sobre catálisis en general y, con un nivel mayor de detalle, los relacionados con la catálisis enzimática resaltando su importancia en relación a múltiples aspectos biotecnológicos, ambientales y económicos.
Se resumen los distintos métodos de inmovilización estudiados en la literatura a lo largo de la historia de esta disciplina, señalando las ventajas y desventajas de cada uno. También se hace una revisión de la variedad de materiales utilizados como soportes sólidos.
Se puntualiza en soportes magnéticos, en particular a base de nanopartículas del óxido de hierro Fe3O4, magnetita (MAG). Se explicitan las características de la MAG, seleccionada para este trabajo. Las estrategias de síntesis de este óxido de hierro son brevemente reseñadas, profundizando en el método de co-precipitación. Finalmente se enumeran los objetivos puntuales de las tesis.
En el capítulo II se detalla el procedimiento experimental para la inmovilización de CALB. Se establecen las condiciones de reacción en las que se medirá la actividad catalítica (reacción test) y un protocolo de muestreo adecuado para la determinación de conversión. Por último, se describen las técnicas de caracterización aplicadas a los catalizadores y materiales precursores junto con el tratamiento necesario de las muestras para cada una.
El capítulo III incluye el estudio de la síntesis de los soportes nanoparticulados a base de magnetita. Se analizan la influencia del tipo y
concentración de estabilizante empleado en el medio de coprecipitación de MAG sobre las propiedades fisicoquímicas de las partículas formadas. Los modificantes explorados fueron ácido oleico, dodecilsulfato de sodio, polietilénglicol de alto peso molecular (35000) y hexametiléntetramina. Además, se estudia la funcionalización de las partículas magnéticas con grupos amino (NH2) empleando quitosano (QUIT) o lisina. Las muestras fueron caracterizadas por SEM-EDX, TEM, DRIFTS y DLS. Se establecen las formas en que cada sustancia orgánica participa en el mecanismo de cristalización y mediante éste se logra explicar las diferencias observadas en el tamaño, forma y funcionalidad superficial de las partículas.
En el capítulo IV se estudia la inmovilización covalente de CALB sobre partículas magnéticas modificadas con ácido oleico, quitosano (QUIT) y glutaraldehído (GLUT). Las interacciones QUIT-GLUT, GLUT-CALB y CALB-CALB son estudiadas en profundidad. Se propone una relación entre las propiedades del soporte y el biocatalizador con la actividad catalítica. En base a esta relación, se sugiere un mecanismo de inmovilización que explica el comportamiento del sistema y se determinan cuáles son las variables críticas a ajustar para mejorar el protocolo de inmovilización.
En el capítulo V constituye un trabajo de optimización del catalizador preparado en el capítulo IV. Para ello, se investiga la inmovilización de CALB sobre el mismo soporte estudiado en el capítulo IV, previa modificación de la superficie con cantidades variables de 3-aminopropiltrietoxisilano (APTS) y de más GLUT. La influencia de la cantidad nominal de CALB ofrecida también fue evaluada. Un programa computacional se empleó para diseñar los experimentos y analizar estadísticamente los resultados. Se obtuvieron modelos matemáticos que permitieron identificar las variables significativas para cada respuesta evaluada: conversión, carga enzimática y actividad específica. Se seleccionaron los mejores catalizadores para comprobar su estabilidad operacional y retención de actividad en almacenamiento. Los mecanismos de inmovilización sobre las distintas superficies que explican estas propiedades son propuestos. Los diferentes catalizadores y materiales precursores fueron caracterizados ampliamente por varias técnicas.
En el capítulo VI se exploran distintos métodos de cuantificación de proteínas en vista de los errores encontrados en los más comunes (Bradford, Lowry) y que se implementan en forma rutinaria para el cálculo de la carga enzimática en los biocatalizadores preparados. CALB fue determinada en el caldo comercial, los sobrenadantes de inmovilización y aguas de lavado de varias muestras mediante 4 protocolos distintos, combinando el clásico ensayo de Bradford con la determinación de azufre por emisión atómica. Se analizó la influencia del patrón de concentración elegido para el método colorimétrico y se identificaron las interferencias presentes en ambas técnicas. Fue posible establecer un protocolo de cuantificación de esta lipasa que, a diferencia de otros, arrojó valores de carga enzimática concordantes con la actividad de los catalizadores. La demostración de los errores sistemáticos cometidos a través del ensayo de Bradford sugiere que este método sea recon siderado – e incluso descartado- para cuantificar cualquier proteína, ya sea en un medio de inmovilización o no.
En el capítulo VII se investiga la inmovilización de CALB un nuevo soporte: magnetita funcionalizada con el aminoácido lisina (LIS). Este material posee propiedades diferentes a MAG-QUIT en cuanto a tamaño de partícula y estabilidad en suspensión acuosa. El acoplamiento de la lipasa se realizó mediante dos técnicas: A- adsorción simple sobre MAG-LIS seguida de entrecruzamiento con GLUT de concentración variable, y B-activación de MAG-LIS con GLUT de una concentración específica (determinada según los resultados del método A) y posterior inmovilización covalente. Se logró diseñar un protocolo que permite obtener un biocatalizador activo, fácilmente separable del medio de reacción, reutilizable, resistente a los reusos y total preservación de actividad durante largos períodos de almacenamiento.
En capítulo VIII se enumeran las conclusiones globales de todo la investigación realizada y se establecen los lineamientos considerados pertinentes para el trabajo a futuro. The present thesis follows two parallel and complementary lines of research: on the one hand, the synthesis of magnetite particles by the co-precipitation method in the presence of surfactants; and on the other, the use of different materials prepared as new supports for the immobilization of Candida Antarctica lipase B (CALB), an enzyme in depth studied by the biocatalysis group of the PLAPIQUI institute over several years. The performance of the obtained biocatalysts was tested in the solvent-free esterification reaction of oleic acid with ethanol.
Chapter I introduces general concepts of catalysis and, with a greater level of detail, those related to enzymatic catalysis. The importance was highlighted in relation to multiple aspects such as biotechnology, environment and economy. Different methods of immobilization studied in the literature throughout the history of this discipline are summarized, pointing out the advantages and disadvantages of each one. There is also an extensive review of the variety of materials used as solid supports.
Magnetic supports are well described, particularly those based on magnetite nanoparticles. The characteristics of the magnetite as the one chosen for this work are explained. The synthesis strategies of nanoparticulated iron oxide are briefly reviewed, deepening in the co-precipitation method. Finally the specific objectives of the theses are listed.
Chapter II details the experimental procedure for CALB immobilization. The reaction conditions in which the catalytic activity (test reaction) and a suitable sampling protocol for conversion determination are measured are set forth. Finally, the characterization techniques applied to the catalysts and precursor materials are described together with the necessary treatment of the samples for each one.
Chapter III includes the study of the synthesis of nanoparticulated supports based on magnetite. The influence of the type and concentration of stabilizer used for MAG coprecipitation medium on the physicochemical properties of the formed particles is analyzed. The modifiers screened were oleic
acid, sodium dodecylsulfate, high molecular weight polyethylene glycol (35,000) and hexamethylenetetramine. In addition, the functionalization of the magnetic particles with amino groups (NH2) using chitosan (QUIT) or lysine was studied. Samples were characterized by SEM-EDX, TEM, DRIFTS and DLS. The rol of each organic substance in the mechanism of crystallization are established. This analysis allows to explain the differences observed in the size, shape and surface functionality of the particles.
Chapter IV studies the covalent immobilization of CALB on magnetic particles modified with oleic acid, chitosan (QUIT) and glutaraldehyde (GLUT). The QUIT-GLUT, GLUT-CALB and CALB-CALB interactions are studied in depth. A relation between the properties of the support and the biocatalyst with the catalytic activity is proposed. Based on this relationship, an immobilization mechanism is suggested that explains the behavior of the system and determines which are the critical variables to be adjusted to improve the immobilization protocol.
Chapter V is an optimization work for catalyst prepared in Chapter IV. For this purpose, CALB was immobilized on the same support studied in Chapter IV, after modification of the surface with varying amounts of 3-aminopropyltriethoxysilane (APTS) and more GLUT. The influence of the nominal amount of CALB offered was also evaluated. A computer program was used to design the experiments and statistically analyze the results. Mathematical models were obtained to identify the significant variables for each evaluated response: conversion, enzymatic loading and specific activity. The best catalysts were selected to check their operational stability and activity retention after storage. The mechanisms of immobilization on the different surfaces that explain these properties are proposed. The prepared catalysts and precursor materials were widely characterized by various techniques.
In Chapter VI, different methods of protein quantification are explored considering the errors found in the most common ones (Bradford, Lowry) , routinely implemented for the calculation of the enzymatic loading in biocatalysts. CALB was determined in the commercial broth, the immobilization supernatants and washing waters of several samples by 4 different protocols, combining the
classic Bradford test with the determination of sulfur by atomic emission. The influence of the concentration standard chosen for the colorimetric method were studied and the interferences present in both techniques were identified. It was possible to establish a protocol for quantification of this lipase which, unlike others, yielded values of enzymatic loading consistent with the activity of the catalysts. The demonstration of the systematic errors made through the Bradford test suggests that this method be considered - and even ruled out - to quantify any protein, whether in immobilization medium or not.
Chapter VII investigates the immobilization of CALB on a new support: magnetite functionalized with the amino acid lysine (LIS). This material has different properties from MAG-QUIT in terms of particle size and stability in aqueous suspension. Lipase coupling was performed by two techniques: A- simple adsorption on MAG-LIS followed by cross-linking with GLUT of variable concentration, and B- activation of MAG-LIS with GLUT of a specific concentration (determined according to the results of method A) and subsequent covalent immobilization. It was possible to design a protocol that allows to obtain an active biocatalyst, easily removable from the reaction medium, reusable, resistant to reuse and with total preservation of activity during long periods of storage.
Chapter VIII lists the overall conclusions of the research carried out and establishes the guidelines considered relevant for future work.
Colecciones
- Tesis de postgrado [1412]
El ítem tiene asociados los siguientes ficheros de licencia: