Mostrar el registro sencillo del ítem

dc.contributor.advisorBrignole, Esteban A.
dc.contributor.advisorPereda, Selva
dc.contributor.authorSánchez, Francisco Adrián
dc.date2013-03-22
dc.date.accessioned2015-09-17T18:27:13Z
dc.date.available2015-09-17T18:27:13Z
dc.date.issued2013es
dc.identifier.other2013-1230es
dc.identifier.urihttp://repositoriodigital.uns.edu.ar/handle/123456789/2459
dc.description.abstractEn la presente tesis se plantea el modelado del equilibrio entre fases de mezclas de importancia en biorrefinerías, y el desarrollo de módulos de simulación de procesos y productos. El modelo termodinámico empleado es la Ecuación de Estado a Contribución Grupal con Asociación (gca-eos) que ha sido desarrollada y exitosamente aplicada al procesamiento de mezclas derivadas de sustratos vegetales y de sistemas a alta presión por el grupo de Termodinámica de Procesos de plapiqui. La gca-eos es robusta para la representación, tanto a baja como alta presión, de sistemas altamente no ideales que presenten asimetría en tamaño y energética y con presencia de interacciones de tipo puente hidrógeno, generalmente presentes en mezclas procedentes del procesamiento de productos naturales. Su carácter a contribución grupal facilita la predicción de compuestos complejos y mezclas a los que se les desconoce sus propiedades, como también frecuentemente ocurre con los de origen natural. Dadas las características favorables de este modelo se propone su extensión para cubrir un número mayor de grupos funcionales típicos del procesamiento en biorrefinerías y una mejor descripción de las interacciones asociativas que pueden presentar el agua, alcoholes, compuestos nitrogenados y aromáticos. Teniendo en cuenta esta premisa se implementaron algoritmos de cálculo termodinámico que fueron incorporados a simuladores de procesos, con énfasis en equipos involucrados en la purificación de biocombustibles, como por ejemplo equipos de destilación flash, columnas de destilación y extractores líquido-líquido. La presente tesis se desarrolla en 8 capítulos. Luego de un apartado introductorio, el capítulo 2 describe el modelo termodinámico gca-eos, destacando leyes físicas que lo sustentan ya que resultan una herramienta sólida para generar las estrategias de parametrización desarrolladas en esta tesis. Los siguientes capítulos, muestran la extensión del modelo a las distintas familias de compuestos orgánicos estudiados. Específicamente, el capítulo 3 trata la extensión la gca-eos, a hidrocarburos aromáticos en sistemas que involucren alcoholes alifáticos y agua. El capítulo 4 por su parte, discute una nueva definición de los grupos fenólicos en sistemas con hidro - carburos aromáticos, alifáticos y agua. Los capítulos 5 y 6 discuten la parametrización de sistemas nitrogenados: el primero define los nuevos grupos amino, y si interacción con hi - drocarburos y alcoholes, mientras que en el segundo se incluye mezclas acuosas de estos compuestos y se prueba la capacidad predictiva de la gca-eos en soluciones acuosas de alcanolaminas. Siendo estas últimas un reconocido solvente para la remoción de gases ácidos también presentes en el procesamiento, tanto bio- como termo-químico, de biomasa. Por último, el capítulo 7 trata el desarrollo de un módulo de simulación de columnas trifásicas. Se desarrollan las ecuaciones básicas que permiten adaptar un algoritmo tradicional de destilación líquido-vapor para considerar la posible existencia de dos fases líquidas. Como caso de estudio, se analiza una columna de remoción de metanol en el contexto del proceso supercrítico de producción de biodiesel.es
dc.description.abstractPhase equilibrium modeling of mixtures of importance in biorefineries, and the development of process simulation modules and products are presented in this thesis. The thermodynamic model chosen is the Group Contribution with Association Equation of State (gca-eos). This model has been developed by the group of Process Thermodynamics in plapiqui and successfully applied to model processes of mixtures of vegetable substrates and high-pressure systems. The gca-eos is capable to model systems of highly non-ideal mixtures, at low or high pressures, which exhibit important energetic and size asymmetry. Also the model is able to handle molecules that present h-bond interactions, characteristic of natural products mixtures. Moreover, its group contribution formulation allows the predictions of unknown properties of complex compounds and mixtures, as in the case of natural compounds. These characteristics encourage an extension of its parameter table to cover a greater number of functional groups that are common in biorefineries processes. Another goal of this thesis was to obtain a better description of associative interactions present in mixtures of water, alcohols, with aromatic and nitrogen compounds. With this premise, thermodynamic calculation algorithms were incorporated into process simulators, with emphasis on equipment involved in the purification of biofuels, such as flash distillation equipment, distillation columns and liquid–liquid extractors. This thesis is presented in eight chapters. After an introductory section, Chapter 2 describes the mathematical formulation of the gca-eos, with emphasis on underlying physical laws which generate robust parameterization strategies developed in this dissertation. The following chapters show the extension of this model to different families of organic compounds studied in this work. Chapter 3 addresses the extension of the model to aromatic hydrocarbons in systems with water and aliphatic alcohols. Chapter 4 discuss a new definition of the phenolic group present in systems with aromatic and aliphatic hydrocarbons and water. Chapters 5 and 6 discuss the parameterization of amine groups: the first one defines new amine groups and its interaction with aliphatic hydrocarbons and alcohols, while the second one includes aqueous amine mixtures, and the predictive capability of the gca-eos is tested with aqueous alkanolamine solutions. Finally, Chapter 7 shows the development of a simulation module of a three phase distillation column. Basic equations that enable a typical vapor–liquid distillation algorithm to represent the existence of two liquid phases are presented. Furthermore, a methanol stripping column in the context of supercritical biodiesel production is analyzed as a case of study.es
dc.language.isospaes
dc.subjectIngeniería químicaes
dc.subjectModelado termodinámicoes
dc.subjectGCA-EOSes
dc.subjectSaftes
dc.subjectBiorrefineríases
dc.subjectContribución grupales
dc.subjectEcuación de estadoes
dc.titleIngeniería de equilibrio de fases en biorrefineríases
dc.typetesis doctorales
bcuns.collection.nameBiblioteca Digital Académicaes
bcuns.collection.acronymBDAes
bcuns.collection.urlhttp://tesis.uns.edu.ar/es
bcuns.collection.institutionBiblioteca Central de la Universidad Nacional del Sures
bcuns.depositorylibrary.nameBiblioteca Central de la Universidad Nacional del Sures
bcuns.author.affiliationUniversidad Nacional del Sur. Departamento de Ingeniería Químicaes
bcuns.author.affiliationConsejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Sur. Planta Piloto de Ingeniería Químicaes
bcuns.advisor.affiliationUniversidad Nacional del Sures
bcuns.advisor.affiliationConsejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Sur. Planta Piloto de Ingeniería Químicaes
bcuns.defense.cityBahía Blancaes
bcuns.defense.provinceBuenos Aireses
bcuns.defense.countryArgentinaes
bcuns.programme.nameDoctorado en Ingeniería Químicaes
bcuns.programme.departmentDepartamento de Ingeniería Químicaes
bcuns.thesisdegree.nameDoctor en Ingeniería Químicaes
bcuns.thesisdegree.grantorUniversidad Nacional del Sures
uns.type.publicationVersionaccepteden
bcuns.depositarylibrary.acronymEUNes
dcterms.accessRights.openAireinfo:eu-repo/semantics/openAccesses


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem