# **CAPÍTULO 2**

Concentración de tensiones en placa cuadrada ortótropa con un pequeño orificio circular.

# 2.1 INTRODUCCIÓN.

En la etapa de diseño de estructuras o mecanismos, es importante conocer los esfuerzos y la distribución de los mismos para una adecuada selección de materiales a utilizar en su construcción. De esta manera es posible optimizar la forma geométrica, y responder a los requerimientos de su funcionamiento. En diversas disciplinas de la ingeniería es una práctica común, el realizar orificios en los elementos estructurales para alivianarlas, alterar su respuesta dinámica, permitir el pasaje de cables o conductos o el acceso a otras partes de la estructura entre otros motivos.

Asimismo, como es sabido, la presencia de orificios en estructuras produce alteraciones muy significativas en la distribución de las tensiones, de allí la singular importancia de conocer cómo se distribuyen, en los entornos de los orificios, y los valores extremos que las mismas alcanzan en sus cercanías para realizar el diseño.

## 2.1.1 El problema de Kirsch.

El estudio de la concentración de las tensiones que produce un orificio circular practicado en una placa delgada de dimensiones infinitas, de material isótropo, y sometida a un esfuerzo de tracción uniaxial,  $N_x=N$  en su plano, ver Figura 2.1, fue resuelto por Kirsch <sup>[1], [2], [3]</sup> en el año 1898. El clásico problema, así planteado, es un estado plano de tensiones.



Figura 2.1. Esquema del problema de Kirsch.

La ecuación diferencial que gobierna el estado plano de tensiones es:

$$\nabla^4 F = 0 \tag{2.1}$$

Junto con las condiciones de borde del sistema.

*F* es la denominada tradicionalmente función tensión, o función de Airy, y en ausencia de fuerzas de volumen, se relaciona con las tensiones normales del plano  $\sigma_x$ ,  $\sigma_y$  y  $\tau_{xy}$  a través de las conocidas expresiones:

$$\sigma_{y} = \frac{\partial^{2} F}{\partial x^{2}}$$

$$\sigma_{x} = \frac{\partial^{2} F}{\partial^{2} y}$$

$$\tau_{xy} = -\frac{\partial^{2} F}{\partial x \partial y}$$
(2.2)

La solución de la ecuación biarmónica, expresión (2.1), junto con las condiciones de bordes, permite determinar las expresiones de las tensiones en el plano. Haciendo un cambio de coordenadas, de cartesianas a coordenadas polares,  $r y \alpha$ , se expresa la tensión radial  $\sigma_r y$  la tensión tangencial  $\sigma_{\alpha}$  sobre el dominio del problema en la forma:

$$\sigma_r = \frac{N}{2h} \left( 1 - \frac{a^2}{r^2} \right) + \frac{N}{2h} \left( 1 - 4\frac{a^2}{r^2} + 3\frac{a^4}{r^4} \right) \cos(2\alpha)$$
(2.3)

$$\sigma_{\alpha} = \frac{N}{2h} \left( 1 + \frac{a^2}{r^2} \right) - \frac{N}{2h} \left( 1 + 3\frac{a^4}{r^4} \right) \cos\left(2\alpha\right)$$
(2.4)

$$\tau_{r\alpha} = -\frac{N}{2h} \left( 1 + 2\frac{a^2}{r^2} - 3\frac{a^4}{r^4} \right) \operatorname{sen}(2\alpha)$$
(2.5)

Siendo: *a* el radio del orificio circular, *r* la coordenada radial medida desde el centro del orificio al punto considerado en la placa,  $\alpha$  la coordenada angular medida en sentido antihorario a partir del semieje positivo *x* y *N* el esfuerzo uniforme por unidad de longitud aplicada en los bordes.

Obviamente cuando r = a, los valores de  $\sigma_r = \tau_{r\alpha} = 0$ . Reemplazando r = a y  $\alpha = \pi/2$  y  $(3/2)\pi$  la expresión (2.4) asume el valor 3(N/h). Esto es, la tensión tangencial presente en un punto del borde interior es tres veces la tensión aplicada en el borde exterior. Estos puntos están ubicados sobre el diámetro perpendicular a la dirección de la carga.

Una variante del problema anterior consiste en considerar la placa sometida a un estado biaxial y uniforme de carga en su plano,  $N_x=N_y=N$ . Al tratarse de un problema bidimensional la ecuación diferencial gobernante es la (2.1) sujeto a las nuevas condiciones de borde.



Figura 2.2. Estado biaxial de tensiones.

Las expresiones resultantes para las componentes del tensor de tensión son:

$$\sigma_r = \frac{N}{h} \left( 1 - \frac{a^2}{r^2} \right) \tag{2.6}$$

$$\sigma_{\alpha} = \frac{N}{h} \left( 1 + \frac{a^2}{r^2} \right) \tag{2.7}$$

En el contorno del orificio, cuando r = a en la ecuación (2.7), lógicamente  $\sigma_r = 0$  y  $\sigma_{\alpha}$  adopta la magnitud  $\sigma_{\alpha} = 2(N/h)$  en todo el contorno. Se observa una disminución del factor de concentración de tensiones con respecto al caso uniaxial.

Los dos problemas anteriores ilustran la problemática y variabilidad de los elementos estructurales con orificios internos, en este caso particular se trata de un orificio circular.

### 2.1.2 Placa de material ortótropo.

Diversas configuraciones de carga y geometría de orificios están resueltas analíticamente y por métodos aproximados en la bibliografía técnico-científica para materiales isótropos. Para formas geométricas particulares, la solución analítica del sistema diferencial se vuelve de difícil obtención o prácticamente imposible. La solución analítica se dificulta aún más, cuando el material empleado, posee características elásticas anisotrópicas. Un caso especial sucede cuando el material de un cuerpo homogéneo tiene tres planos de simetría elástica perpendiculares entre sí que pasan a través de cada punto del dominio. Entonces el material se dice ortótropo.

Lekhnitskii <sup>[4]</sup>, resolvió el estado plano de tensiones para variadas geometrías de placas con orificios, con distintas solicitaciones de esfuerzos. Otros autores <sup>[5],[6]</sup> han analizado concentración de tensiones en medios ortótropos ante diversas geometrías de orificio.

Este capítulo se centra en el análisis de los esfuerzos que se producen en cercanías de un orificio circular practicado en una placa delgada ortótropa de dimensiones infinitas, sujeta a una tensión uniforme de tracción "N" en dos direcciones ortogonales. Para este análisis, las direcciones de carga se adoptan coincidentes con los ejes coordenados "x" e "y"; tal como se muestra en la Figura 2.2.

Si las direcciones principales de elasticidad coinciden con los ejes coordenados y no se consideran fuerzas de volumen, la ecuación diferencial gobernante es:

$$\frac{1}{E_2} \cdot \frac{\partial^4 F}{\partial x^4} + \left(\frac{1}{G} - \frac{2\nu_1}{E_1}\right) \cdot \frac{\partial^4 F}{\partial x^2 \partial y^2} + \frac{1}{E_1} \cdot \frac{\partial^4 F}{\partial y^4} = 0$$
(2.8)

Donde: F es la función tensión que cumple con las relaciones dadas en (2.2).

 $E_1$ ,  $E_2$  son los módulos de Young en las direcciones principales elásticas "x" e "y" respectivamente.

 $G = G_{12}$ , es el módulo de elasticidad transversal, que caracteriza el cambio de ángulo entre las direcciones principales "x" e "y",

 $v_1 = v_{12}$  es el módulo de Poisson que caracteriza la disminución de longitud en la dirección "y" durante la tracción en dirección "x", y análogamente  $v_2 = v_{21}$  es el módulo de Poisson que caracteriza la disminución de longitud en la dirección "x" durante la tracción en dirección "y".

Además existe la siguiente relación entre los módulos de Young y los módulos de Poisson debido a la simetría de los materiales ortótropos:

$$E_{1}.\nu_{2} = E_{2}.\nu_{1} \tag{2.9}$$

Por consiguiente para realizar el estudio de las tensiones de una placa ortótropa sujeta a un estado plano de tensiones es suficiente conocer sólo estas cuatro constantes  $E_1, E_2, G \neq v_1$ .

Resolviendo la ecuación diferencial (2.8) junto a las condiciones de bordes para el caso de la placa con un orificio circular, sin perturbaciones en sus bordes, y sujeta a tensiones de tracción "p" en las dos direcciones principales (tensión hidrostática en el plano xy), se obtiene para la tensión tangencial sobre el orificio:

$$\sigma_{\alpha} = p \frac{E_{\alpha}}{E_1} \Big[ -k + k \big( k + n \big) \cos^2 \big( \alpha \big) + \big( 1 + n \big) \sin^2 \big( \alpha \big) \Big]$$
(2.10)

Donde:

$$k = \sqrt{\frac{E_1}{E_2}} \tag{2.11}$$

$$n = \sqrt{2\left(\frac{E_1}{E_2} - \nu_1\right) + \frac{E_1}{G}}$$
(2.12)

 $\alpha$ , es el ángulo polar medido desde el eje "x" positivo en sentido antihorario.

 $E_{\alpha}$  es el módulo de Young en la dirección tangente al borde del orificio.

En función de las constantes elásticas en las direcciones principales, se puede expresar  $E_{\alpha}$  como:

$$\frac{1}{E_{\alpha}} = \frac{\operatorname{sen}^{4}(\alpha)}{E_{1}} + \left(\frac{1}{G} - \frac{2\nu_{1}}{E_{1}}\right) \operatorname{sen}^{2}(\alpha) \operatorname{cos}^{2}(\alpha) + \frac{\operatorname{cos}^{4}(\alpha)}{E_{2}}$$
(2.13)

Se define como factor de tensiones a la relación  $K = \sigma_{\alpha}/(N/h)$  y las relaciones extremas:

$$K_{+} = \frac{\sigma_{\alpha+}}{\left(N/h\right)} \tag{2.14}$$

$$K_{+m} = \frac{\sigma_{\alpha+min}}{\left(N/h\right)} \tag{2.15}$$

Donde:

 $K_+$  es el factor de concentración de tensiones máximas.

 $K_{+m}$  corresponde a las tensiones de tracción mínimas que aparecen en el borde del orificio al aplicar la tensión de tracción p.

En el presente capítulo se consideran dos situaciones cuyos resultados se exponen en tablas adecuadas. De esta manera se ofrecen soluciones de casos no encontrados en la literatura sobre la concentración de tensiones, útiles para el diseño o comparación con resultados de otros métodos existentes.

# 2.2 ESTADO BIAXIAL EN PLACA ORTÓTROPA.

## 2.2.1 Diseño del mallado.

La primera situación, se trata de una placa de material ortótropo, con un pequeño orificio circular, sometida a un estado de esfuerzos biaxial en su plano. Los ejes principales

de elasticidad coinciden con los ejes coordenados como muestra la Figura 2.3. En este caso  $N_x=N_y=N$ .



Figura 2.3. Esquema del sistema a analizar.

En el análisis del sistema, distintos módulos  $E_1$ ,  $E_2$ , G y  $v_1$  fueron tomados en consideración para cubrir un gran espectro de situaciones posibles.

Para el análisis del problema propuesto se utilizó el módulo de análisis lineal perteneciente al software comercial del método de elementos finitos ALGOR<sup>[7]</sup>. Este permite, por un lado, realizar el diseño geométrico del mallado del modelo correspondiente, efectuar el ensamble y armado de los sistemas de ecuaciones, resolverlos mediante rutinas numéricas internas y mostrar los resultados obtenidos. Dentro de las posibilidades de este módulo está permitida la utilización de dos tipos de elementos planos (2D) diferentes; los elementos cuadrangulares de cuatro nodos y los elementos triangulares de tres nodos. Ambos elementos tienen dos grados de libertad por nodo que corresponden a los corrimientos en las direcciones coordenadas, y por ello resultan adecuados para la característica bidimensional del problema. Los dos elementos son elementos conformes.

En este proceso, es importante tener presente las características del programa, antes mencionadas, para realizar un mallado acorde a los datos requeridos y a la precisión deseada para el estudio.

En este punto es importante definir: las condiciones de borde del problema y la ubicación de los puntos de interés para un correcto diseño del mallado. El objetivo del análisis es determinar el factor de concentración de tensiones máximo en el modelo, que tendrá lugar en el borde del orificio circular. Por ello es necesario discretizar la circunferencia en un número de segmentos rectos tal que permita obtener un conjunto de datos denso y homogéneo sobre el orificio. Por otro lado, se logró un mallado fino y de elementos regulares en las cercanías del agujero para asegurar la precisión del método de elementos finitos.

Con el fin antes mencionado se colocaron 400 nodos sobre la circunferencia del borde interno lo cual nos permitió obtener datos de tensiones, sobre el borde interno, cada 0,9°. También, se pudo construir un mallado denso de elementos regulares, como muestra la Figura 2.4, en las cercanías del orificio donde se espera la mayor distorsión del campo de tensiones.



Figura 2.4. Mallado en las cercanías del orificio.

El mallado mostrado posee 22800 nodos y 22400 elementos 2D, cuadrangulares. Dos zonas componen esta parte del mallado. Una zona, la interior, está construida con una corona circular de elementos cuadrangulares y una segunda región, circundante a ésta, que permite pasar de una distribución circular de elementos a una distribución longitudinal con direcciones preponderantemente horizontal y vertical. Los elementos que rodean al orificio poseen una distorsión muy pequeña y es la misma para todo el sector de la corona circular, lo cual contribuye a la precisión del método. En cambio, la distorsión de los elementos aumenta notablemente en la zona relativamente lejana al orificio donde el campo de tensiones no sufre importantes cambios. Esto se puede apreciar mejor en la Figura 2.5, la cual muestra un cuarto del orificio.



Figura 2.5. Mallado en las cercanías del orificio, detalle.

Al alejarnos del orificio el campo de tensiones será más uniforme. Este comportamiento es aprovechable desde el punto de vista del modelado numérico, ya que en zonas alejadas del agujero conviene que los elementos sean de mayor tamaño, lo cual reduce el sistema de ecuaciones a resolver. Por ello, hacia los bordes externos, se aumentó el tamaño de los elementos cercanos al orificio con la utilización de elementos triangulares. Esta transición se muestra la Figura 2.6.



Figura 2.6. Detalle de la zona de transición.

Un factor importante en el problema planteado es el tamaño de la placa cuadrada, es decir la magnitud l en relación al diámetro d, Figura 2.7.



Figura 2.7. Medidas del modelo.

Como se pretende aproximar el factor de concentración de tensiones en una placa de dimensiones infinitas es importante fijar, mediante algún criterio, qué relación d/l del modelo en elementos finitos reproduce, aproximadamente, los valores de tensiones en la placa de dimensiones infinitas.

Para este fin se realizaron varios mallados con relaciones d/l decrecientes. El factor de concentración de tensiones de cada modelo se comparó con la solución dada por Lekhnitskii<sup>[4]</sup> para un material con los siguientes valores de sus constantes elásticas:

$$E_1 = 1,2 \times 10^5 \frac{\text{kg}}{\text{cm}^2}$$
$$E_2 = 0,6 \times 10^5 \frac{\text{kg}}{\text{cm}^2}$$
$$G = 0,07 \times 10^5 \frac{\text{kg}}{\text{cm}^2}$$
$$\nu_1 = 0,071$$

Los resultados dados por Lekhnitskii son para la máxima tensión:

$$\sigma_{\alpha+} = 4,04 \ N \to \alpha = 90^{\circ} \tag{2.16}$$

y para la mínima:

$$\sigma_{\alpha+min} = 1,09 \ N \to \alpha = 45^{\circ} \tag{2.17}$$

 $\alpha$  indica la posición sobre el contorno del orificio en la que se produce cada una de las tensiones tangenciales, medido en sentido antihorario a partir del eje x.

Los sucesivos modelos fueron construidos agregando zonas externas de menor densidad de elementos para considerar placas de mayor tamaño, pudiéndose decir que cada modelo contiene al anterior. Todos los modelos poseen restricciones en dos nodos, para anular los movimientos de cuerpo rígido. En uno de los nodos se impone la nulidad de corrimientos en la dirección x e y, en otro, la nulidad de corrimiento en dirección y. Ambos nodos tienen coordenada y = 0 y se encuentran sobre los bordes verticales exteriores. Las características de los distintos modelos se detallan en la Tabla 2.1.

| Modelo | d/l   | Nº de elementos | Nº de nodos |
|--------|-------|-----------------|-------------|
| 1      | 0,160 | 43408           | 43608       |
| 2      | 0,082 | 61344           | 61088       |
| 3      | 0,055 | 90224           | 90120       |
| 4      | 0,041 | 101244          | 100304      |
| 5      | 0,033 | 114240          | 113376      |

| Tabla 2.1. | Características | de los | distintos | modelos | diseñados. |
|------------|-----------------|--------|-----------|---------|------------|
|------------|-----------------|--------|-----------|---------|------------|

En los modelos ensayados se notó la misma distribución de tensiones aunque no los mismos valores numéricos. Se observó una perfecta concordancia en la ubicación de los puntos donde se producen las tensiones extremas en todos los modelos.

De esta manera se llegó al modelo 5 que brinda una concordancia satisfactoria con respecto a los encontrados en la literatura (2.16) y (2.17), ver Tabla 2.2, y es el adoptado para obtener los resultados numéricos de los casos analizados.

| Modelo | d/l   | $K_+$ | $K_{+\mathrm{m}}$ |
|--------|-------|-------|-------------------|
| 1      | 0,160 | 4,35  | 1,16              |
| 2      | 0,082 | 4,13  | 1,10              |
| 3      | 0,055 | 4,08  | 1,09              |
| 4      | 0,041 | 4,06  | 1,08              |
| 5      | 0,033 | 4,05  | 1,08              |

Tabla 2.2. Valores de  $K_+$  y  $K_{+m}$  para cada relación d/l del modelo.

La Figura 2.8 muestra un detalle del mallado utilizado donde se aprecia la zona interior y las distintas zonas de transición a elementos de mayor tamaño hacia los bordes externos.



Figura 2.8. Detalle del mallado del modelo 5.

#### 2.2.2 Resultados numéricos.

El modelo de malla de la Figura 2.8, se utilizó para resolver el problema para placas con diferentes características elásticas. Se variaron los parámetros elásticos previamente definidos,  $E_1/E_2$  y  $G/E_2$ , y se mantuvo constante el coeficiente de Poisson  $v_1$  en un valor de 0,30. Se adoptaron valores de  $E_1/E_2$  entre 1 y 10, en forma progresiva variando de a uno y luego se analizó para dos valores  $E_1/E_2$  de considerable magnitud, 20 y 40. Para cada una de estas relaciones entre los módulos de elasticidad, se tomaron valores de  $G/E_2 = 0,1, 0,3, 0,5, 0,6, 0,7, 0,8, 0,9$  y 1.

En cada tabla hay cuatro grupos de resultados, el valor del factor de concentraciones de tensiones máximo,  $K_+$ , el ángulo  $\beta_+$  que determina la ubicación del punto sobre el contorno del orificio donde se produce, el valor de  $K_{+m}$ , el ángulo que indica la posición  $\beta_{+m}$  y el valor del factor sobre los ejes coordenados x e y,  $K_{0^\circ} y K_{90^\circ}$ . Los ángulos están indicados en grados sexagesimales.

Los resultados obtenidos <sup>[8]</sup>, se presentan desde la Tabla 2.3 hasta la Tabla 2.10. En la Tabla 2.3, que corresponde a la relación  $G/E_2=0,1$ , se observan los valores más altos del factor  $K_+$  de todas las combinaciones elegidas.

|               |          |                                        | $G/E_2 = 0,1$     |                             |               |                |
|---------------|----------|----------------------------------------|-------------------|-----------------------------|---------------|----------------|
| $E_{1}/E_{2}$ | $K_+$    | $\beta_{\!\scriptscriptstyle +}^\circ$ | $K_{+\mathrm{m}}$ | $eta_{+\mathrm{m}}^{\circ}$ | $K_{0^\circ}$ | $K_{90^\circ}$ |
| 1             | 3,40440  | 90                                     | 1,18503           | 45,0000                     | 3,40440       | 3,40440        |
| 2             | 4,33470  | 90                                     | 1,01465           | 48,6000                     | 3,64344       | 4,33470        |
| 3             | 5,03769  | 90                                     | 0,93264           | 50,4000                     | 3,74477       | 5,03769        |
| 4             | 5,62442  | 90                                     | 0,87906           | 52,1999                     | 3,80380       | 5,62442        |
| 5             | 6,13658  | 90                                     | 0,83889           | 53,9999                     | 3,84347       | 6,13658        |
| 6             | 6,59538  | 90                                     | 0,80646           | 54,8999                     | 3,87241       | 6,59538        |
| 7             | 7,01336  | 90                                     | 0,77860           | 56,7000                     | 3,89469       | 7,01336        |
| 8             | 7,39876  | 90                                     | 0,75363           | 57,6000                     | 3,91252       | 7,39876        |
| 9             | 7,75732  | 90                                     | 0,73075           | 58,5000                     | 3,92718       | 7,75732        |
| 10            | 8,09326  | 90                                     | 0,70922           | 60,3000                     | 3,93951       | 8,09326        |
| 20            | 10,68360 | 90                                     | 0,48888           | 69,3000                     | 4,00486       | 10,68360       |
| 40            | 14,00100 | 90                                     | 0,09052           | 71,9999                     | 4,04900       | 14,00100       |

Tabla 2.3. Valores numéricos de  $K_+$ ,  $K_{+m}$ ,  $K_{0^\circ}$  y  $K_{90^\circ}$  y posición de los mismos según  $E_1/E_2$  para  $G/E_2=0,1$ .

|               |         |                                          | $G/E_2 = 0,3$     |                     |               |                |
|---------------|---------|------------------------------------------|-------------------|---------------------|---------------|----------------|
| $E_{1}/E_{2}$ | $K_+$   | $\beta_{\!\scriptscriptstyle +}^{\circ}$ | $K_{+\mathrm{m}}$ | $\beta_{m}^{\circ}$ | $K_{0^\circ}$ | $K_{90^\circ}$ |
| 1             | 2,18509 | 90                                       | 1,84762           | 45,00000            | 2,18509       | 2,18509        |
| 2             | 2,58000 | 90                                       | 1,62557           | 48,60000            | 2,40814       | 2,58000        |
| 3             | 2,86837 | 90                                       | 1,52548           | 50,40000            | 2,49830       | 2,86837        |
| 4             | 3,10621 | 90                                       | 1,46389           | 52,19990            | 2,54938       | 3,10621        |
| 5             | 3,31305 | 90                                       | 1,41991           | 53,09990            | 2,58305       | 3,31305        |
| 6             | 3,49839 | 90                                       | 1,38619           | 53,99990            | 2,60727       | 3,49839        |
| 7             | 3,66767 | 90                                       | 1,35909           | 54,89990            | 2,62570       | 3,66767        |
| 8             | 3,82437 | 90                                       | 1,33639           | 55,79990            | 2,64032       | 3,82437        |
| 9             | 3,97084 | 90                                       | 1,31657           | 55,79990            | 2,65225       | 3,97084        |
| 10            | 4,10877 | 90                                       | 1,29924           | 56,70000            | 2,66222       | 4,10877        |
| 20            | 5,20086 | 90                                       | 1,18724           | 61,19990            | 2,71414       | 5,20086        |
| 40            | 6,67045 | 90                                       | 1,05101           | 66,59990            | 2,74852       | 6,67045        |

Tabla 2.4. Valores numéricos de  $K_+$ ,  $K_{+m}$ ,  $K_{0^\circ}$  y  $K_{90^\circ}$  y posición de los mismos según  $E_1/E_2$  para  $G/E_2=0,3$ .

|               |         |                                          | $G/E_2 = 0,5$     |                     |               |                |
|---------------|---------|------------------------------------------|-------------------|---------------------|---------------|----------------|
| $E_{1}/E_{2}$ | $K_+$   | $\beta_{\!\scriptscriptstyle +}^{\circ}$ | $K_{+\mathrm{m}}$ | $\beta_{m}^{\circ}$ | $K_{0^\circ}$ | $K_{90^\circ}$ |
| 1             | 2,17436 | 45                                       | 1,85050           | -                   | 1,85050       | 1,85050        |
| 2             | 2,08923 | 90                                       | 1,94119           | 48,60000            | 2,06230       | 2,08923        |
| 3             | 2,25403 | 90                                       | 1,84063           | 50,40000            | 2,14533       | 2,25403        |
| 4             | 2,38620 | 90                                       | 1,78055           | 51,30000            | 2,19140       | 2,38620        |
| 5             | 2,49921 | 90                                       | 1,73872           | 53,09990            | 2,22128       | 2,49921        |
| 6             | 2,59934 | 90                                       | 1,70727           | 53,99990            | 2,24250       | 2,59934        |
| 7             | 2,69006 | 90                                       | 1,68250           | 53,99990            | 2,25848       | 2,69006        |
| 8             | 2,77355 | 90                                       | 1,66197           | 54,89990            | 2,27103       | 2,77355        |
| 9             | 2,85125 | 90                                       | 1,64451           | 55,79990            | 2,28120       | 2,85125        |
| 10            | 2,92420 | 90                                       | 1,62952           | 56,70000            | 2,28963       | 3,49837        |
| 20            | 3,49837 | 90                                       | 1,53855           | 59,39990            | 2,33251       | 3,49837        |
| 40            | 4,27614 | 90                                       | 1,44948           | 63,89990            | 2,35978       | 4,27614        |

Tabla 2.5. Valores numéricos de  $K_+$ ,  $K_{+m}$ ,  $K_{0^\circ}$  y  $K_{90^\circ}$  y posición de los mismos según  $E_1/E_2$  para  $G/E_2=0,5$ .

|               |         |                                          | $G/E_2 = 0,6$     |                     |               |                |
|---------------|---------|------------------------------------------|-------------------|---------------------|---------------|----------------|
| $E_{1}/E_{2}$ | $K_+$   | $\beta_{\!\scriptscriptstyle +}^{\circ}$ | $K_{+\mathrm{m}}$ | $\beta_{m}^{\circ}$ | $K_{0^\circ}$ | $K_{90^\circ}$ |
| 1             | 2,28731 | 45                                       | 1,75715           | -                   | 1,75715       | 1,75715        |
| 2             | 2,05287 | 49                                       | 1,95100           | 90,0000             | 1,96483       | 1,95100        |
| 3             | 2,07993 | 90                                       | 1,95394           | 50,4000             | 2,04523       | 2,07993        |
| 4             | 2,18124 | 90                                       | 1,89567           | 51,3000             | 2,08943       | 2,18124        |
| 5             | 2,26673 | 90                                       | 1,85572           | 53,0999             | 2,11790       | 2,26673        |
| 6             | 2,34176 | 90                                       | 1,82592           | 53,9999             | 2,13798       | 2,34176        |
| 7             | 2,40927 | 90                                       | 1,80264           | 53,9999             | 2,15303       | 2,40927        |
| 8             | 2,47106 | 90                                       | 1,78360           | 54,8999             | 2,16479       | 2,47106        |
| 9             | 2,52832 | 90                                       | 1,76750           | 55,7999             | 2,17428       | 2,52832        |
| 10            | 2,58188 | 90                                       | 1,75457           | 57,6000             | 2,18211       | 2,58188        |
| 20            | 2,99934 | 90                                       | 1,67264           | 59,3999             | 2,22145       | 2,99934        |
| 40            | 3.56032 | 90                                       | 1.59877           | 63.0000             | 2.24585       | 3.56032        |

Tabla 2.6. Valores numéricos de  $K_+$ ,  $K_{+m}$ ,  $K_{0^\circ}$  y  $K_{90^\circ}$  y posición de los mismos según  $E_1/E_2$  para  $G/E_2=0,6$ .

|               |         |                                          | $G/E_2 = 0,7$     |                                                  |               |                |
|---------------|---------|------------------------------------------|-------------------|--------------------------------------------------|---------------|----------------|
| $E_{1}/E_{2}$ | $K_+$   | $\beta_{\!\scriptscriptstyle +}^{\circ}$ | $K_{+\mathrm{m}}$ | $eta_{\!\scriptscriptstyle +\mathrm{m}}^{\circ}$ | $K_{0^\circ}$ | $K_{90^\circ}$ |
| 1             | 2,38005 | 45                                       | 1,68738           | -                                                | 1,68738       | 1,68738        |
| 2             | 2,14557 | 49                                       | 1,84718           | 90,0000                                          | 1,89161       | 1,84718        |
| 3             | 2,04873 | 50                                       | 1,94877           | 90,0000                                          | 1,96979       | 1,94877        |
| 4             | 2,02648 | 90                                       | 1,99254           | 50,4000                                          | 2,01242       | 2,02648        |
| 5             | 2,09087 | 90                                       | 1,95466           | 53,0999                                          | 2,03967       | 2,09087        |
| 6             | 2,14664 | 90                                       | 1,92666           | 53,9999                                          | 2,05879       | 2,14664        |
| 7             | 2,19630 | 90                                       | 1,90495           | 53,9999                                          | 2,07304       | 2,19630        |
| 8             | 2,24139 | 90                                       | 1,88747           | 54,8999                                          | 2,08412       | 2,24139        |
| 9             | 2,28289 | 90                                       | 1,87278           | 55,7999                                          | 2,09301       | 2,28289        |
| 10            | 2,32149 | 90                                       | 1,86030           | 55,7999                                          | 2,10034       | 2,32149        |
| 20            | 2,61734 | 90                                       | 1,78902           | 59,3999                                          | 2,13658       | 2,61734        |
| 40            | 3,00781 | 90                                       | 1,72840           | 63,0000                                          | 2,15843       | 3,00781        |

Tabla 2.7. Valores numéricos de  $K_+$ ,  $K_{+m}$ ,  $K_{0^\circ}$  y  $K_{90^\circ}$  y posición de los mismos según  $E_1/E_2$  para  $G/E_2=0,7$ .

|               |         |                                        | $G/E_2 = 0,8$     |                     |               |                |
|---------------|---------|----------------------------------------|-------------------|---------------------|---------------|----------------|
| $E_{1}/E_{2}$ | $K_+$   | $\beta_{\!\scriptscriptstyle +}^\circ$ | $K_{+\mathrm{m}}$ | $\beta_{m}^{\circ}$ | $K_{0^\circ}$ | $K_{90^\circ}$ |
| 1             | 2,45796 | 45,0000                                | 1,63312           | -                   | 1,63312       | 1,63312        |
| 2             | 2,22408 | 48,6000                                | 1,76613           | 90,0000             | 1,83443       | 1,76613        |
| 3             | 2,12955 | 50,4000                                | 1,84609           | 90,0000             | 1,91072       | 1,84609        |
| 4             | 2,07579 | 52,1999                                | 1,90509           | 90,0000             | 1,95199       | 1,90509        |
| 5             | 2,03980 | 53,0999                                | 1,95272           | 90,0000             | 1,97820       | 1,95272        |
| 6             | 2,01387 | 55,7999                                | 1,99313           | 89,0999             | 1,99313       | 1,99315        |
| 7             | 2,02858 | 90,0000                                | 1,99353           | 53,9999             | 2,01003       | 2,02858        |
| 8             | 2,06034 | 90,0000                                | 1,97749           | 53,9999             | 2,02051       | 2,06034        |
| 9             | 2,08925 | 90,0000                                | 1,96437           | 53,9999             | 2,02890       | 2,08925        |
| 10            | 2,11590 | 90,0000                                | 1,95315           | 55,7999             | 2,03577       | 2,11590        |
| 20            | 2,31411 | 90,0000                                | 1,89161           | 59,3999             | 2,06928       | 2,31411        |
| 40            | 2,56630 | 90,0000                                | 1,84341           | 63,0000             | 2,08884       | 2,56630        |

Tabla 2.8. Valores numéricos de  $K_+$ ,  $K_{+m}$ ,  $K_{0^\circ}$  y  $K_{90^\circ}$  y posición de los mismos según  $E_1/E_2$  para  $G/E_2=0,8$ .

|               |         |                                          | $G/E_2 = 0,9$     |                             |               |                |
|---------------|---------|------------------------------------------|-------------------|-----------------------------|---------------|----------------|
| $E_{1}/E_{2}$ | $K_+$   | $\beta_{\!\scriptscriptstyle +}^{\circ}$ | $K_{+\mathrm{m}}$ | $eta_{+\mathrm{m}}^{\circ}$ | $K_{0^\circ}$ | $K_{90^\circ}$ |
| 1             | 2,52459 | 45,0000                                  | 1,58966           | -                           | 1,58966       | 1,58966        |
| 2             | 2,29165 | 48,6000                                  | 1,70097           | 90,0000                     | 1,78846       | 1,70097        |
| 3             | 2,19949 | 50,4000                                  | 1,76335           | 90,0000                     | 1,86312       | 1,76335        |
| 4             | 2,14802 | 52,1999                                  | 1,80710           | 90,0000                     | 1,90320       | 1,80710        |
| 5             | 2,11408 | 53,0999                                  | 1,84104           | 90,0000                     | 1,92850       | 1,84104        |
| 6             | 2,08980 | 54,8999                                  | 1,86892           | 90,0000                     | 1,94604       | 1,86892        |
| 7             | 2,07154 | 54,8999                                  | 1,89271           | 90,0000                     | 1,95897       | 1,89271        |
| 8             | 2,05697 | 55,7999                                  | 1,91354           | 90,0000                     | 1,96893       | 1,91354        |
| 9             | 2,04508 | 55,7999                                  | 1,93213           | 90,0000                     | 1,97686       | 1,93213        |
| 10            | 2,03513 | 56,7000                                  | 1,94896           | 90,0000                     | 1,98334       | 1,94896        |
| 20            | 2,06675 | 90,0000                                  | 1,98297           | 58,5000                     | 2,01440       | 2,06675        |
| 40            | 2,20413 | 90,0000                                  | 1,94671           | 63,0000                     | 2,03191       | 2,20413        |

Tabla 2.9. Valores numéricos de  $K_+$ ,  $K_{+m}$ ,  $K_{0^\circ}$  y  $K_{90^\circ}$  y posición de los mismos según  $E_1/E_2$  para  $G/E_2=0.9$ .

|               |         |                                          | $G/E_2 = 1$       |                             |                 |                |
|---------------|---------|------------------------------------------|-------------------|-----------------------------|-----------------|----------------|
| $E_{1}/E_{2}$ | $K_+$   | $\beta_{\!\scriptscriptstyle +}^{\circ}$ | $K_{+\mathrm{m}}$ | $eta_{+\mathrm{m}}^{\circ}$ | $K_{0^{\circ}}$ | $K_{90^\circ}$ |
| 1             | 2,58242 | 45,0000                                  | 1,55403           | 90                          | 1,55403         | 1,55403        |
| 2             | 2,35058 | 48,6000                                  | 1,64739           | 90                          | 1,75065         | 1,64739        |
| 3             | 2,26076 | 50,4000                                  | 1,69517           | 90                          | 1,82387         | 1,69517        |
| 4             | 2,21154 | 52,1999                                  | 1,72621           | 90                          | 1,86292         | 1,72621        |
| 5             | 2,17962 | 53,0999                                  | 1,74873           | 90                          | 1,88741         | 1,74873        |
| 6             | 2,15710 | 53,9999                                  | 1,76614           | 90                          | 1,90429         | 1,76614        |
| 7             | 2,14051 | 54,8999                                  | 1,78019           | 90                          | 1,91668         | 1,78019        |
| 8             | 2,12738 | 55,7999                                  | 1,79187           | 90                          | 1,92618         | 1,79187        |
| 9             | 2,11690 | 55,7999                                  | 1,80181           | 90                          | 1,93370         | 1,80181        |
| 10            | 2,10818 | 56,7000                                  | 1,81041           | 90                          | 1,93982         | 1,81041        |
| 20            | 2,06548 | 59,3999                                  | 1,86060           | 90                          | 1,96869         | 1,86060        |
| 40            | 2,04039 | 63,8999                                  | 1,90085           | 90                          | 1,98431         | 1,90085        |

Tabla 2.10. Valores numéricos de  $K_+$ ,  $K_{+m}$ ,  $K_{0^\circ}$  y  $K_{90^\circ}$  y posición de los mismos según  $E_1/E_2$  para  $G/E_2=1$ .

En las tablas subsiguientes, Tabla 2.11 y Tabla 2.12, se presentan una serie de casos en los que se estudió con más detalle el efecto de la variación de la relación de ortotropía. Se amplió el espectro de valores para las relaciones de  $E_1/E_2$  entre 1 y 2 para  $G/E_2 = 0,1$  y 0,5.

|               |         |                                          | $G/E_2 = 0,1$     |                     |               |                |
|---------------|---------|------------------------------------------|-------------------|---------------------|---------------|----------------|
| $E_{1}/E_{2}$ | $K_+$   | $\beta_{\!\scriptscriptstyle +}^{\circ}$ | $K_{+\mathrm{m}}$ | $\beta_{m}^{\circ}$ | $K_{0^\circ}$ | $K_{90^\circ}$ |
| 1,0           | 3,40440 | 90                                       | 1,18503           | 45,0000             | 3,40440       | 3,40440        |
| 1,1           | 3,51518 | 90                                       | 1,15878           | 45,9000             | 3,44333       | 3,51518        |
| 1,2           | 3,62067 | 90                                       | 1,13542           | 45,9000             | 3,47699       | 3,62067        |
| 1,3           | 3,72155 | 90                                       | 1,11502           | 45,9000             | 3,50647       | 3,72155        |
| 1,4           | 3,81838 | 90                                       | 1,09644           | 46,7999             | 3,53254       | 3,81838        |
| 1,5           | 3,91161 | 90                                       | 1,07980           | 46,7999             | 3,55582       | 3,91161        |
| 1,6           | 4,00159 | 90                                       | 1,06465           | 47,7000             | 3,57677       | 4,00159        |
| 1,7           | 4,08865 | 90                                       | 1,05060           | 47,7000             | 3,59574       | 4,08865        |
| 1,8           | 4,17304 | 90                                       | 1,03781           | 47,7000             | 3,61303       | 4,17304        |
| 1,9           | 4,25499 | 90                                       | 1,02587           | 48,6000             | 3,62887       | 4,25499        |
| 2,0           | 4,33470 | 90                                       | 1,01465           | 48,6000             | 3,64344       | 4,33470        |

Tabla 2.11.  $K_+$ ,  $K_{+m}$ ,  $K_{0^\circ}$  y  $K_{90^\circ}$  y posición de los mismos para  $E_1/E_2$  desde 1 a 2 para  $G/E_2=0,1$ .

|               |         |                                        | $G/E_2 = 0,5$     |                                  |               |                |
|---------------|---------|----------------------------------------|-------------------|----------------------------------|---------------|----------------|
| $E_{1}/E_{2}$ | $K_+$   | $\beta_{\scriptscriptstyle +}^{\circ}$ | $K_{+\mathrm{m}}$ | $eta_{\!\!\!+m}^{\circ}^{\circ}$ | $K_{0^\circ}$ | $K_{90^\circ}$ |
| 1,0           | 2,28731 | 45,0000                                | 1,75715           | -                                | 1,75715       | 1,75715        |
| 1,1           | 2,13624 | 45,9000                                | 1,88093           | 90,00000                         | 1,88631       | 1,88093        |
| 1,2           | 2,10341 | 45,9000                                | 1,90912           | 90,00000                         | 1,91689       | 1,90912        |
| 1,3           | 2,07476 | 46,7999                                | 1,93569           | 90,00000                         | 1,94336       | 1,93569        |
| 1,4           | 2,04938 | 46,7999                                | 1,96079           | 90,00000                         | 1,96654       | 1,96079        |
| 1,5           | 2,02677 | 47,70000                               | 1,98460           | 89,09990                         | 1,98702       | 1,98461        |
| 1,6           | 2,00739 | 85,4999                                | 2,00517           | 6,30000                          | 2,00529       | 2,00732        |
| 1,7           | 2,02903 | 90,0000                                | 1,98772           | 45,90000                         | 2,02169       | 2,02903        |
| 1,8           | 2,04986 | 90,00000                               | 1,97095           | 46,79990                         | 2,03651       | 2,04986        |
| 1,9           | 2,06991 | 90,0000                                | 1,95547           | 47,70000                         | 2,04999       | 2,06991        |
| 2,0           | 2,08923 | 90,0000                                | 1,94119           | 48,60000                         | 2,06230       | 2,08923        |

Tabla 2.12.  $K_+$ ,  $K_{+m}$ ,  $K_{0^\circ}$  y  $K_{90^\circ}$  y posición de los mismos para  $E_1/E_2$  desde 1 a 2 para  $G/E_2=0,5$ .

|               |         |                     | $G/E_2 = 0,6$     |                     |               |                |
|---------------|---------|---------------------|-------------------|---------------------|---------------|----------------|
| $E_{1}/E_{2}$ | $K_+$   | $\beta_{+}^{\circ}$ | $K_{+\mathrm{m}}$ | $\beta_{m}^{\circ}$ | $K_{0^\circ}$ | $K_{90^\circ}$ |
| 1,0           | 2,28731 | 45,0000             | 1,75715           | -                   | 1,75715       | 1,75715        |
| 1,1           | 2,24855 | 45,9000             | 1,78234           | 90,0000             | 1,79245       | 1,78234        |
| 1,2           | 2,21538 | 45,9000             | 1,80568           | 90,0000             | 1,82254       | 1,80568        |
| 1,3           | 2,18641 | 46,7999             | 1,82746           | 90,0000             | 1,84855       | 1,82746        |
| 1,4           | 2,16093 | 46,7999             | 1,84792           | 90,0000             | 1,87128       | 1,84792        |
| 1,5           | 2,13812 | 46,7999             | 1,86724           | 90,0000             | 1,89135       | 1,86724        |
| 1,6           | 2,11777 | 47,7000             | 1,88556           | 90,0000             | 1,90922       | 1,88556        |
| 1,7           | 2,09929 | 47,7000             | 1,90301           | 90,0000             | 1,92525       | 1,90301        |
| 1,8           | 2,08243 | 47,7000             | 1,91967           | 90,0000             | 1,93971       | 1,91967        |
| 1,9           | 2,06705 | 48,6000             | 1,93565           | 90,0000             | 1,95284       | 1,93565        |
| 2,0           | 2,05287 | 49,0000             | 1,95100           | 90,0000             | 1,96483       | 1,95100        |
| 2,1           | 2,03976 | 48,6000             | 1,96578           | 90,0000             | 1,97582       | 1,96578        |
| 2,2           | 2,02758 | 48,6000             | 1,98004           | 90,0000             | 1,98593       | 1,98004        |
| 2,3           | 2,01625 | 49,5000             | 1,99381           | 89,0999             | 1,99528       | 1,99384        |
| 2,35          | 2,01095 | 52,1999             | 1,99965           | 0,9000              | 1,99969       | 2,00057        |
| 2,4           | 2,00728 | 85,4999             | 2,0039            | 0,9000              | 2,00395       | 2,00720        |
| 2,5           | 2,02016 | 90,0000             | 1,99569           | 45,9000             | 2,01201       | 2,02016        |

La Tabla 2.13 corresponde a la relación  $G/E_2 = 0,6$ , con  $E_1/E_2$  variando de 1 a 2,5 de una forma más detallada.

Tabla 2.13.  $K_+$ ,  $K_{+m}$ ,  $K_{0^{\circ}}$  y  $K_{90^{\circ}}$  y posición de los mismos para  $E_1/E_2$  desde 1 a 2,5 para  $G/E_2=0,6$ .

En la Tabla 2.14, Tabla 2.15 y Tabla 2.16 se presentan valores de concentración de tensiones para un rango más detallado de  $E_1/E_2$  entre 5 y 7 con  $G/E_2=0.8$ , 0.9 y 1.

|               |         |                                          | $G/E_2 = 0,8$     |                     |               |                |
|---------------|---------|------------------------------------------|-------------------|---------------------|---------------|----------------|
| $E_{1}/E_{2}$ | $K_+$   | $\beta_{\!\scriptscriptstyle +}^{\circ}$ | $K_{+\mathrm{m}}$ | $\beta_{m}^{\circ}$ | $K_{0^\circ}$ | $K_{90^\circ}$ |
| 5,0           | 2,03980 | 53,0999                                  | 1,95272           | 90,0000             | 1,97820       | 1,95272        |
| 5,1           | 2,03680 | 54,8999                                  | 1,95704           | 90,0000             | 1,98032       | 1,95704        |
| 5,2           | 2,03397 | 54,8999                                  | 1,96129           | 90,0000             | 1,98236       | 1,96129        |
| 5,3           | 2,03121 | 54,8999                                  | 1,96548           | 90,0000             | 1,98433       | 1,96548        |
| 5,4           | 2,02853 | 54,8999                                  | 1,96960           | 90,0000             | 1,98624       | 1,96960        |
| 5,5           | 2,02592 | 54,8999                                  | 1,97367           | 90,0000             | 1,98808       | 1,97367        |
| 5,6           | 2,02338 | 54,8999                                  | 1,97767           | 90,0000             | 1,98987       | 1,97767        |
| 5,7           | 2,02091 | 54,8999                                  | 1,98162           | 90,0000             | 1,99160       | 1,98162        |
| 5,8           | 2,01850 | 54,8999                                  | 1,98551           | 90,0000             | 1,99327       | 1,98551        |
| 5,9           | 2,01712 | 54,8999                                  | 1,98791           | 90,0000             | 1,99430       | 1,98791        |
| 6,0           | 2,01387 | 55,7999                                  | 1,99313           | 89,0999             | 1,99313       | 1,99315        |
| 6,1           | 2,01165 | 55,7999                                  | 1,99686           | 89,0999             | 1,99801       | 1,99689        |
| 6,2           | 2,00949 | 59,3999                                  | 2,00054           | 89,0999             | 1,99950       | 2,00058        |
| 6,3           | 2,00754 | 60,3000                                  | 2,00090           | 0,90000             | 2,00095       | 2,00423        |
| 6,4           | 2,00787 | 85,4999                                  | 2,00228           | 6,30000             | 2,00235       | 2,00783        |
| 6,5           | 2,01139 | 90,0000                                  | 2,00254           | 45,0000             | 2,00372       | 2,01139        |
| 6,6           | 2,01491 | 90,0000                                  | 2,00090           | 45,0000             | 2,00505       | 2,01491        |
| 6,7           | 2,01839 | 90,0000                                  | 1,99905           | 51,3000             | 2,00634       | 2,01839        |
| 6,8           | 2,02182 | 90,0000                                  | 1,99718           | 53,9999             | 2,00760       | 2,02182        |
| 6,9           | 2,02522 | 90,0000                                  | 1,99533           | 53,9999             | 2,00883       | 2,02522        |
| 7,0           | 2,02858 | 90,0000                                  | 1,99353           | 53,9999             | 2,01003       | 2,02858        |

Tabla 2.14.  $K_+$ ,  $K_{+m}$ ,  $K_{0^\circ}$  y  $K_{90^\circ}$  y posición de los mismos para  $E_1/E_2$  desde 5 a 7 para  $G/E_2=0,8$ .

|               | $G/E_2 = 0.9$ |                                          |                   |                                  |               |                |  |
|---------------|---------------|------------------------------------------|-------------------|----------------------------------|---------------|----------------|--|
| $E_{1}/E_{2}$ | $K_+$         | $\beta_{\!\scriptscriptstyle +}^{\circ}$ | $K_{+\mathrm{m}}$ | $eta_{\!\!\!+m}^{\circ}^{\circ}$ | $K_{0^\circ}$ | $K_{90^\circ}$ |  |
| 5,0           | 2,11408       | 53,0999                                  | 1,84104           | 90                               | 1,92850       | 1,84104        |  |
| 5,1           | 2,11130       | 53,0999                                  | 1,84406           | 90                               | 1,93053       | 1,84406        |  |
| 5,2           | 2,10861       | 53,0999                                  | 1,84702           | 90                               | 1,93249       | 1,84702        |  |
| 5,3           | 2,10599       | 53,0999                                  | 1,84993           | 90                               | 1,93439       | 1,84993        |  |
| 5,4           | 2,10345       | 53,0999                                  | 1,85278           | 90                               | 1,93622       | 1,85278        |  |
| 5,5           | 2,10099       | 53,0999                                  | 1,85559           | 90                               | 1,93799       | 1,85559        |  |
| 5,6           | 2,09859       | 53,0999                                  | 1,85835           | 90                               | 1,93970       | 1,85835        |  |
| 5,7           | 2,09629       | 53,9999                                  | 1,86106           | 90                               | 1,94136       | 1,86106        |  |
| 5,8           | 2,09406       | 53,9999                                  | 1,86372           | 90                               | 1,94297       | 1,86372        |  |
| 5,9           | 2,09188       | 53,9999                                  | 1,86634           | 90                               | 1,94453       | 1,86634        |  |
| 6,0           | 2,08980       | 54,8999                                  | 1,86892           | 90                               | 1,94604       | 1,86892        |  |
| 6,1           | 2,08777       | 54,8999                                  | 1,87146           | 90                               | 1,94750       | 1,87146        |  |
| 6,2           | 2,08579       | 54,8999                                  | 1,87397           | 90                               | 1,94893       | 1,87397        |  |
| 6,3           | 2,08386       | 54,8999                                  | 1,87643           | 90                               | 1,95031       | 1,87643        |  |
| 6,4           | 2,08198       | 54,8999                                  | 1,87886           | 90                               | 1,95165       | 1,87886        |  |
| 6,5           | 2,08014       | 54,8999                                  | 1,88125           | 90                               | 1,95296       | 1,88125        |  |
| 6,6           | 2,07834       | 54,8999                                  | 1,8836            | 90                               | 1,95423       | 1,88360        |  |
| 6,7           | 2,07658       | 54,8999                                  | 1,88543           | 90                               | 1,95546       | 1,88543        |  |
| 6,8           | 2,07486       | 54,8999                                  | 1,88822           | 90                               | 1,95666       | 1,88822        |  |
| 6,9           | 2,07318       | 54,8999                                  | 1,89048           | 90                               | 1,95783       | 1,89048        |  |
| 7,0           | 2,07154       | 54,8999                                  | 1,89271           | 90                               | 1,95897       | 1,89271        |  |

Tabla 2.15.  $K_+$ ,  $K_{+m}$ ,  $K_{0^\circ}$  y  $K_{90^\circ}$  y posición de los mismos para  $E_1/E_2$  desde 5 a 7 para  $G/E_2=0.9$ .

| $G/E_2 = 1$   |         |                                      |                   |                                                  |               |                |
|---------------|---------|--------------------------------------|-------------------|--------------------------------------------------|---------------|----------------|
| $E_{1}/E_{2}$ | $K_+$   | $eta_{\!\scriptscriptstyle +}^\circ$ | $K_{+\mathrm{m}}$ | $eta_{\!\scriptscriptstyle +\mathrm{m}}^{\circ}$ | $K_{0^\circ}$ | $K_{90^\circ}$ |
| 5,0           | 2,17962 | 53,0999                              | 1,74873           | 90                                               | 1,88741       | 1,74873        |
| 5,1           | 2,17703 | 53,0999                              | 1,75066           | 90                                               | 1,88937       | 1,75066        |
| 5,2           | 2,17452 | 53,0999                              | 1,75255           | 90                                               | 1,89126       | 1,75255        |
| 5,3           | 2,17208 | 53,0999                              | 1,75439           | 90                                               | 1,89309       | 1,75439        |
| 5,4           | 2,16971 | 53,0999                              | 1,75618           | 90                                               | 1,89485       | 1,75618        |
| 5,5           | 2,16741 | 53,0999                              | 1,75794           | 90                                               | 1,89656       | 1,75794        |
| 5,6           | 2,16521 | 53,9999                              | 1,75965           | 90                                               | 1,89821       | 1,75965        |
| 5,7           | 2,16310 | 53,9999                              | 1,76133           | 90                                               | 1,89980       | 1,76133        |
| 5,8           | 2,16105 | 53,9999                              | 1,76297           | 90                                               | 1,90135       | 1,76297        |
| 5,9           | 2,15905 | 53,9999                              | 1,76457           | 90                                               | 1,90284       | 1,76457        |
| 6,0           | 2,15710 | 53,9999                              | 1,76614           | 90                                               | 1,90429       | 1,76614        |
| 6,1           | 2,15521 | 53,9999                              | 1,76768           | 90                                               | 1,90570       | 1,76768        |
| 6,2           | 2,15336 | 53,9999                              | 1,76918           | 90                                               | 1,90707       | 1,76918        |
| 6,3           | 2,15162 | 54,8999                              | 1,77065           | 90                                               | 1,90839       | 1,77065        |
| 6,4           | 2,14992 | 54,8999                              | 1,77210           | 90                                               | 1,90968       | 1,77210        |
| 6,5           | 2,14826 | 54,8999                              | 1,77351           | 90                                               | 1,91093       | 1,77351        |
| 6,6           | 2,14664 | 54,8999                              | 1,77490           | 90                                               | 1,91214       | 1,77490        |
| 6,7           | 2,14505 | 54,8999                              | 1,77626           | 90                                               | 1,91332       | 1,77626        |
| 6,8           | 2,14350 | 54,8999                              | 1,77759           | 90                                               | 1,91447       | 1,77759        |
| 6,9           | 2,14199 | 54,8999                              | 1,77890           | 90                                               | 1,91559       | 1,77890        |
| 7,0           | 2,14051 | 54,8999                              | 1,78019           | 90                                               | 1,91668       | 1,78019        |

Tabla 2.16.  $K_+$ ,  $K_{+m}$ ,  $K_{0^{\circ}}$  y  $K_{90^{\circ}}$  y posición de los mismos para  $E_1/E_2$  desde 5 a 7 para  $G/E_2=1$ .

De la observación de los resultados en las tablas precedentes, se observa que la magnitud de los factores de concentración de tensiones máximos y mínimos, así como su ubicación resultan fuertemente afectados por las relaciones elásticas del material elegido, como era de prever. Para visualizar el efecto de dichas variaciones con la ortotropía del material, se presentan los gráficos mostrados en la Figura 2.9 y la Figura 2.10.



Figura 2.9.  $K_+$  versus la relación  $E_1/E_2$ , según distintas relaciones  $G/E_2$ .

En la Figura 2.9 se aprecia los mayores valores de  $K_+$  alcanzados para las relaciones  $G/E_2=0,1 \text{ y } 0,3$  en comparación con los restantes valores de  $G/E_2$ .

Un hecho digno de mención, es el diferente comportamiento del parámetro  $K_+$  en relación con el aumento de  $E_1/E_2$  para distintas relaciones de  $G/E_2$ . En efecto, puede observarse que para las relaciones de  $G/E_2=0,1$  más significativamente y también  $G/E_2=0,3$ , el valor de  $K_+$  aumenta conforme crece la  $E_1/E_2$ . Para los otros valores de  $G/E_2$  considerados, se nota que el valor de  $K_+$  no presenta grandes variaciones.

La Figura 2.10 permite, al cambiar la escala, apreciar que para valores de  $G/E_2$  entre 0,6 y 0,8 la magnitud de  $K_+$  decrece y luego crece a medida que  $E_1/E_2$  aumenta. En cambio para  $G/E_2=0.9$  y 1,  $K_+$  decrece monotónicamente con el crecimiento de  $E_1/E_2$ .



Figura 2.10. Detalle de  $K_+$  versus la relación  $E_1/E_2$ , para  $G/E_2=0,6, 0,7, 0,8, 0,9, 1$ .

En la Figura 2.11 se grafican los valores del ángulo  $\beta_+$  en radianes, de la posición sobre el orificio donde se produce la máxima tensión, en función de las relaciones  $E_1/E_2$  y  $G/E_2$ . Nótese que, para valores bajos de la relación  $G/E_2$ , es decir 0,1 y 0,3, el valor de  $\beta_+$ permanece invariable en el valor  $\pi/2$ , o 90°. A medida que  $G/E_2$  crece, valores de  $G/E_2=0,5$ o superiores, el valor de  $\beta_+$  se mantiene por debajo  $\pi/2$  hasta una relación  $E_1/E_2$ , según el valor de  $G/E_2$ , a partir de la cual toma el valor  $\pi/2$ .



Figura 2.11. Ángulo  $\beta_+$ , en grados sexagesimales, en función de la relación  $E_1/E_2$ .

La Figura 2.12 es un detalle de la figura anterior para los valores  $E_1/E_2$  entre 5 y 7.



Figura 2.12. Ángulo  $\beta_+$ , en grados sexagesimales, en función de la relación  $E_1/E_2$  (detalle de Figura 2.11).

Para las relaciones de  $G/E_2 = 0,1$  hasta 0,3 los puntos de máxima tensión se producen sobre el eje coordenado "y", en tanto que para relaciones mayores, los puntos de máxima tensión se desplazan del eje tal como se observa en la Figura 2.11. Este comportamiento requirió de un análisis más minucioso como muestra la representación gráfica de los resultados numéricos de la Tabla 2.16, Figura 2.12.

Los resultados obtenidos sobre el problema de concentración de tensiones en un pequeño orificio circular en una placa ortótropa sometida a un estado de tracción biaxial en su plano, permiten analizar la problemática desde un punto de vista global. Es decir, analizar el aumento o disminución de  $K_+$ , con respecto a las características elásticas del material ortótropo expresadas a través de las relaciones  $E_1/E_2$ ,  $G/E_2$  y el módulo  $v_1$ .

En forma general surge del análisis que las características elásticas del material del modelo en consideración afectan al valor del factor de concentración de tensiones. También es afectada, la posición, en el borde interno, del punto más comprometido.

Cabe mencionar que el módulo  $v_1$  se consideró constante, con valor 0,3. Una extensión

al análisis presentado sería considerar variaciones en el módulo de Poisson.

## 2.3 ESTADO GENERAL DE ESFUERZOS

### 2.3.1 Diseño del mallado.

Otra situación analizada, más general que la anterior, trata sobre el efecto en la distribución de tensiones de un pequeño orificio circular en una placa cuadrada sometida a un estado de carga, en su borde externo, en el que se combinan esfuerzos normales  $N_x$ ,  $N_y$  y esfuerzos de corte  $N_{xy}$ . Esta situación se esquematiza en la Figura 2.13. Con  $\theta$  se indica el ángulo que las direcciones principales elásticas forman con las direcciones coordenadas.



Figura 2.13. Esquema del problema.

Para dar mayor generalidad al problema se consideraron distintas orientaciones de los ejes principales de elasticidad, ángulo  $\theta$ . En este punto es importante aclarar que cuando los ejes principales de elasticidad no coinciden con los ejes coordenados la expresión (1.32) se torna mucho más compleja, lo que incrementa la necesidad de recurrir a métodos aproximados.

Las diagonales de la placa de la Figura 2.13, constituyen ejes de simetría para el problema de tensiones en análisis. Consecuentemente, se han considerado orientaciones para los ejes principales de elasticidad variando entre  $-45^{\circ}$  y  $+45^{\circ}$ .

Con respecto a los esfuerzos aplicados en los bordes, cuatro casos fueron analizados. Estos casos son:

a) 
$$N_x = N_y = 0$$
,  $N_{xy}$   
b)  $N_x = N_y = N_{xy}$   
c)  $N_x = N_y = 2N_{xy}$   
d)  $N_x = N_y = N_{xy}/2$ 

El caso a) fue resuelto por Lekhintskii<sup>[4]</sup>, y se adoptó para verificar la exactitud del modelo utilizado como se mostrará más adelante.

El esquema de carga elegido,  $N_x = N_y$ , con el modelo propuesto puede representar cualquier combinación de esfuerzos axiles en direcciones giradas 45° con respecto a los ejes *x*, *y*.

En la resolución del problema se utilizó nuevamente el método de Elementos Finitos, recurriéndose al módulo de análisis lineal del software comercial mencionado anteriormente, ALGOR<sup>[7]</sup>.

El mallado en elementos finitos se realizó con elementos cuadrangulares de 4 nodos con 2 grados de libertad por nodo, los corrimientos en las direcciones coordenadas. El elemento utilizado es conforme.

Anteriormente, se comprobó que d/l = 0,03, Figura 2.7, es la relación límite, por debajo de la cual no se observan cambios significativos en los valores del factor de concentración de tensiones y en la distribución de las tensiones. Es decir, que para relaciones d/l hasta 0,03 puede considerarse a la placa como infinita.

El diseño del mallado para este problema no es el mismo que el utilizado para el caso en que el estado de tensiones aplicados es de tracción biaxial. Esto se debe a que el mallado anterior, ensayado con las condiciones de esfuerzos esquematizados en la Figura 2.13, presentó irregularidades numéricas al considerar distintas orientaciones de los ejes principales de ortotropía. Es decir, en las zonas en donde comienzan los elementos cuadrangulares, ver Figura 2.4 y Figura 2.5, los resultados de tensiones presentaban valores muy altos. Por esta razón, se diseñó un modelo que no presentara este problema.

La geometría del mallado, en una amplia zona alrededor del agujero se obtuvo por intersección de coronas circulares con centro coincidente con el del agujero y líneas radiales, lo que resultó en elementos cuadrangulares con muy poca distorsión. En el borde del agujero, zona de interés para este estudio, se colocaron 400 elementos que permiten obtener valores de tensión cada 0,9° sobre el borde circular. El mallado utilizado posee 92404 elementos y un número de nodos de 92960. En la Figura 2.14 se muestra un esquema del mallado sobre un cuarto de placa:



Figura 2.14. Detalle del mallado de la placa.

Cabe señalar la diferencia entre los mallados de la Figura 2.4 y Figura 2.14.

El esfuerzo de corte se impuso en el modelo como las cargas nodales equivalentes sobre los nodos del borde externo.

Los movimientos de cuerpo rígido de la placa fueron anulados restringiéndolos en un nodo ubicado sobre el punto medio del borde externo izquierdo.

2.3.1.1 Verificación de resultados para la solicitación de corte puro,  $N_x=N_y=0$  y  $N_{xy}$ 

La configuración a) de esfuerzos se utilizó para validar el funcionamiento del mallado nuevo. La solución analítica para el caso de corte puro fue tomada de la literatura<sup>[4]</sup>. Cuando los ejes de elasticidad coinciden con los ejes coordenados ( $\theta$ =0°), la expresión de la tensión tangencial al contorno es la siguiente:

$$\sigma_{\alpha} = -\frac{N_{xy}}{h} \frac{E_{\alpha}}{2E_1} (1+k+n) n \operatorname{sen}(2\alpha)$$
(2.18)

Donde:

 $N_{xy}$ , es el valor de la tensión de corte por unidad de longitud, aplicada a los bordes de la placa.

k y n, se expresaron anteriormente con las relaciones (2.11) y (2.13).

 $\alpha$ , es el ángulo polar medido desde el semieje x positivo en sentido antihorario.

 $E_{\alpha}$ , es el módulo de Young en la dirección tangente al borde del orificio dada en la relación (2.13).

Se consideró un material ortótropo con valores de las constantes elásticas:

$$E_{1} = 1,2 \ 10^{5} \ \frac{\text{kg}}{\text{cm}^{2}}$$
$$E_{2} = 0,6 \ 10^{5} \ \frac{\text{kg}}{\text{cm}^{2}}$$
$$G = 0,07 \ 10^{5} \ \frac{\text{kg}}{\text{cm}^{2}}$$
$$\nu_{1} = 0,071$$

Utilizando la ecuación (2.18) y calculando el valor de  $K_{+}=\sigma_{\alpha}/N_{xy}$  se obtuvo el valor:

 $K_{+} = 4,13$ 

Mientras que calculando con el modelo de elementos finitos construido para este análisis, se determinó prácticamente el mismo valor del factor  $K_{+} = 4,14$ .

A continuación se presentan los resultados de los distintos casos resueltos, los mismos se encuentran publicados en la literatura técnico-científica<sup>[9]</sup>.

#### 2.3.2 Resultados numéricos de los distintos casos.

2.3.2.1 Resultados para la solicitación  $N_x = N_y = N_{xy}$ 

Una de las solicitaciones a considerar en el estado de esfuerzos es cuando  $N_x=N_y=N_{xy}=N$ . La máxima tensión principal en el modelo sin orificio,  $\sigma_1$ , se tomó como la tensión con respecto a la cual se compara la tensión máxima en el modelo con agujero:

$$K_{+} = \frac{\sigma_{\alpha+}}{\sigma_{1}} \tag{2.19}$$

$$K_{-} = \frac{\sigma_{\alpha-}}{\sigma_{1}} \tag{2.20}$$

Donde:  $\sigma_{\alpha^+}$  es la tensión de tracción máxima en el modelo con agujero.

 $\sigma_{\alpha}$  es la tensión de compresión máxima en el modelo con agujero.

 $\sigma_1$  es la mayor de la tensiones principales en el modelo sin orificio.

De la expresión de las tensiones principales para el estado plano de tensiones<sup>[10]</sup> se tiene:

$$\sigma_{1,2} = \left(\frac{\sigma_x + \sigma_y}{2}\right) \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
(2.21)

Donde:

 $\sigma_x$  y  $\sigma_y$  son las tensiones normales a los planos coordenados en el punto.

 $\tau_{xy}$  es la tensión de corte en el punto considerado.

 $\sigma_1$  es la tensión principal máxima y  $\sigma_2$  es la mínima tensión principal en el punto.

En placa sin orificio, el estado de tensiones es constante e igual a las tensiones aplicadas sobre los bordes de la placa. Es decir que para el problema que se trata, las tensiones principales para todo punto del dominio sin orificio, quedan expresadas por:

$$\sigma_{x} = N/h$$

$$\sigma_{y} = N/h$$

$$\tau_{xy} = N/h$$
(2.22)

Utilizando las igualdades dadas en (2.22) con la expresión (2.21), se tiene la tensión principal máxima y mínima sobre todo el dominio, sin la perturbación del orifico:

$$\sigma_1 = 2\frac{N}{h} \tag{2.23}$$
$$\sigma_2 = 0$$

Con las expresiones (2.19) y (2.20), se resume en las expresiones siguientes:

$$K_{+} = \frac{\sigma_{\alpha+}}{2N}h \tag{2.24}$$

$$K_{-} = \frac{\sigma_{\alpha-}}{2N}h \tag{2.25}$$

Desde la Tabla 2.17 hasta la Tabla 2.19 se muestran los resultados de las relaciones  $K_+$ ,  $K_-$  junto a los parámetros angulares  $\beta_+$  y  $\beta_-$  que indican la posición sobre el borde del orificio donde ocurre el valor respectivo.

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                               |               | (              | $G/E_2 = 0,1$ |                     | $v_1 = 0,3$ |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|---------------|---------------------|-------------|----------------|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                | $E_{1}/E_{2}$ | θ°             | $K_+$         | $\beta_{+}^{\circ}$ | <i>K</i>    | β°             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                 |               | -45,00         | 4,36          | 135,00              | -1,43       | 45,00          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                 |               | -22,50         | 3,90          | 152,10              | -1,53       | 55,80          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                 | 2             | 0,00           | 3,51          | 99,90               | -1,23       | 66,60          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                 |               | 22,50          | 5,13          | 117,00              | -0,94       | 42,30          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                 |               | 45,00          | 5,76          | 135,00              | -0,71       | 45,00          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                 |               | -45,00         | 4,33          | 135,00              | -1,75       | 45,00          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                 |               | -22,50         | 3,87          | 152,10              | -1,87       | 57,60          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                 | 3             | 0,00           | 4,09          | 98,10               | -1,48       | 71,10          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                 |               | 22,50          | 6,02          | 116,10              | -0,87       | 44,10          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                 |               | 45,00          | 6,77          | 135,00              | -0,59       | 45,00          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                 |               | -45,00         | 4,31          | 135,00              | -2,01       | 45,00          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                 |               | -22,50         | 3,85          | 152,10              | -2,16       | 58,50          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                 | 4             | 0,00           | 4,57          | 98,10               | -1,72       | 73,80          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                 |               | 22,50          | 6,77          | 116,10              | -0,83       | 45,00          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                 |               | 45,00          | 7,60          | 45,00               | -0,51       | 45,00          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                 |               | -45,00         | 4,29          | 135,00              | -2,23       | 45,00          |
| 5         0,00         5,01         97,20         -1,94         74,70           22,50         7,42         116,10         -0,81         45,90           45,00         8,32         135,00         -0,45         45,00 | _             | -22,50         | 3,84          | 152,10              | -2,41       | 58,50          |
| 22,50         7,42         116,10         -0,81         45,90           45,00         8,32         135,00         -0,45         45,00                                                                                 | 5             | 0,00           | 5,01          | 97,20               | -1,94       | 74,70          |
| 45,00 8,32 135,00 -0,45 45,00                                                                                                                                                                                         |               | 22,50          | 7,42          | 116,10              | -0,81       | 45,90          |
|                                                                                                                                                                                                                       |               | 45,00          | 8,32          | 135,00              | -0,45       | 45,00          |
| -45,00 4,29 135,00 -2,44 45,00                                                                                                                                                                                        |               | -45,00         | 4,29          | 135,00              | -2,44       | 45,00          |
| -22,50 3,83 152,10 -2,64 59,40                                                                                                                                                                                        | 7             | -22,50         | 3,83          | 152,10              | -2,64       | 59,40          |
| 6 0,00 5,40 97,20 -2,15 75,60                                                                                                                                                                                         | 6             | 0,00           | 5,40          | 97,20               | -2,15       | 75,60          |
| 22,50 /,98 116,10 -0,91 90,00                                                                                                                                                                                         |               | 22,50          | 7,98          | 116,10              | -0,91       | 90,00          |
| 45,00 8,97 135,00 -0,42 45,00                                                                                                                                                                                         |               | 45,00          | 8,97          | 135,00              | -0,42       | 45,00          |
| -45,00 4,28 135,00 -2,62 45,00                                                                                                                                                                                        |               | -45,00         | 4,28          | 135,00              | -2,62       | 45,00          |
| -22,50 $3,83$ $152,10$ $-2,84$ $59,40$                                                                                                                                                                                | 7             | -22,50         | 3,83          | 152,10              | -2,84       | 59,40          |
| / 0,00 5,/4 96,30 -2,34 /6,50                                                                                                                                                                                         | /             | 0,00           | 5,74          | 96,30               | -2,34       | /6,50          |
| 45.00 0.55 125.00 0.28 45.00                                                                                                                                                                                          |               | 22,50          | 8,51          | 115,20              | -1,03       | 91,80<br>45.00 |
| 45,00 9,55 155,00 -0,58 45,00                                                                                                                                                                                         |               | 45,00          | 9,33          | 135,00              | -0,38       | 45,00          |
| -43,00 $4,27$ $153,00$ $-2,79$ $43,0022,50 2,92 152,10 2,02 50,40$                                                                                                                                                    |               | -43,00         | 4,27          | 153,00              | -2,79       | 43,00          |
| -22,50 $5,62$ $152,10$ $-5,05$ $59,40$                                                                                                                                                                                | 8             | -22,30         | 5,82          | 152,10              | -3,03       | 59,40<br>76,50 |
| 0,00 $0,07$ $90,50$ $-2,52$ $70,5022,50$ $8,00$ $115,20$ $1,14$ $87,20$                                                                                                                                               | 0             | 22,50          | 8.00          | 90,30               | -2,32       | 70,30<br>87.30 |
| 45.00 10.08 135.00 0.36 45.00                                                                                                                                                                                         |               | 22,30<br>45.00 | 10.08         | 13,20               | -1,14       | 45.00          |
| 45,00 426 135,00 -0,50 45,00                                                                                                                                                                                          |               | 45,00          | 10,08         | 135,00              | -0,30       | 45,00          |
| -45,00 $4,20$ $155,00$ $-2,75$ $45,0022,50$ $2,81$ $152,10$ $2,10$ $50,40$                                                                                                                                            |               | -43,00         | 4,20          | 153,00              | -2,93       | 43,00<br>50,40 |
| -22,50 $5,61$ $152,10$ $-5,19$ $59,409 0.00 6.36 96.30 -2.68 77.40$                                                                                                                                                   | 9             | -22,30         | 5,81          | 96 30               | -3,19       | 77.40          |
| 22,50 $0,00$ $0,00$ $0,00$ $-2,00$ $-2,00$ $77,40$                                                                                                                                                                    | )             | 22 50          | 0,50          | 115 20              | -2,00       | 86.40          |
| 45 00 10 56 135 00 -0.34 45 00                                                                                                                                                                                        |               | 45 00          | 10 56         | 135.00              | -1,24       | 45 00          |
| <u>-45.00</u> <u>4.26</u> <u>135.00</u> <u>-3.00</u> <u>45.00</u>                                                                                                                                                     |               |                | 10,50         | 135,00              |             | 45.00          |
| -72 50 3 81 152 10 -3 35 60 30                                                                                                                                                                                        |               | -72 50         | 3 81          | 152,00              | -3,09       | 60.30          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                  | 10            | 0.00           | 6.63          | 96 30               | -2 84       | 77 40          |
| 22 50 9 85 115 20 -1 35 94 50                                                                                                                                                                                         |               | 22 50          | 9.85          | 115 20              | -1 35       | 94 50          |
| 45.00 11.02 135.00 -0.32 45.00                                                                                                                                                                                        |               | 45.00          | 11.02         | 135.00              | -0.32       | 45.00          |

Tabla 2.17. Resultados numéricos para  $N_x = N_y = N_{xy} \text{ con } G/E_2=0,1 \text{ y } \upsilon_1=0,3.$ 

|               | (      | $G/E_2 = 0,2$ |                     | $v_1 = 0,3$ |                |
|---------------|--------|---------------|---------------------|-------------|----------------|
| $E_{1}/E_{2}$ | θ°     | $K_+$         | $\beta_{+}^{\circ}$ | <i>K</i>    | β <u>°</u>     |
|               | -45,00 | 3,49          | 135,00              | -1,43       | 45,00          |
|               | -22,50 | 3,17          | 147,60              | -1,39       | 54,00          |
| 2             | 0,00   | 2,93          | 106,20              | -1,12       | 59,40          |
|               | 22,50  | 4,07          | 29,70               | -0,86       | 46,80          |
|               | 45,00  | 4,53          | 135,00              | -0,71       | 45,00          |
|               | -45,00 | 3,45          | 135,00              | -1,75       | 45,00          |
|               | -22,50 | 3,13          | 148,50              | -1,68       | 56,70          |
| 3             | 0,00   | 3,30          | 102,60              | -1,27       | 66,60          |
|               | 22,50  | 4,71          | 117,90              | -0,79       | 50,40          |
|               | 45,00  | 5,26          | 135,00              | -0,58       | 45,00          |
|               | -45,00 | 3,43          | 135,00              | -2,02       | 45,00          |
|               | -22,50 | 3,10          | 148,50              | -1,94       | 57,60          |
| 4             | 0,00   | 3,63          | 100,80              | -1,44       | 69,30          |
|               | 22,50  | 5,24          | 117,90              | -0,76       | 54,00          |
|               | 45,00  | 5,87          | 135,00              | -0,50       | 45,00          |
|               | -45,00 | 3,42          | 135,00              | -2,25       | 45,00          |
| -             | -22,50 | 3,08          | 149,40              | -2,17       | 58,50          |
| 5             | 0,00   | 3,92          | 99,90               | -1,59       | 72,00          |
|               | 22,50  | 5,71          | 117,00              | -0,74       | 58,50          |
|               | 45,00  | 6,40          | 135,00              | -0,45       | 45,00          |
|               | -45,00 | 3,40          | 135,00              | -2,46       | 45,00          |
| C             | -22,50 | 3,07          | 149,40              | -2,38       | 58,50          |
| 0             | 0,00   | 4,19          | 99,00               | -1,/5       | 72,90          |
|               | 22,50  | 6,13          | 117,00              | -0,/4       | /1,10          |
|               | 45,00  | 6,8/          | 135,00              | -0,41       | 45,00          |
|               | -45,00 | 3,39          | 135,00              | -2,65       | 45,00          |
| 7             | -22,50 | 5,05          | 149,40              | -2,57       | 59,40<br>72.80 |
| /             | 0,00   | 4,45          | 99,00               | -1,90       | / 5,80         |
|               | 22,50  | 0,31          | 117,00              | -0,78       | 81,00<br>45.00 |
|               | 45,00  | 7,30          | 135,00              | -0,38       | 45,00          |
|               | -43,00 | 3,58          | 135,00              | -2,83       | 43,00<br>50,40 |
| 8             | -22,30 | 3,03          | 99,40               | -2,74       | 74 70          |
| 0             | 22,50  | 4,08<br>6,87  | 116.10              | -2,04       | 84.60          |
|               | 45.00  | 7 71          | 135.00              | -0,35       | 45.00          |
|               | -45,00 | 3 37          | 135,00              | -3.00       | 45,00          |
|               | -22 50 | 3.04          | 149.40              | -2 90       | 60.30          |
| 9             | 0.00   | 4 91          | 98 10               | -2.17       | 75 60          |
| ,             | 22.50  | 7 21          | 116 10              | -0.88       | 87 30          |
|               | 45.00  | 8.08          | 135.00              | -0.34       | 45.00          |
|               | -45 00 | 3 37          | 135.00              | -3 15       | 45.00          |
|               | -22.50 | 3.03          | 149.40              | -3.06       | 60.30          |
| 10            | 0.00   | 5.11          | 98.10               | -2.30       | 75.60          |
|               | 22.50  | 7.52          | 116.10              | -0.94       | 89.10          |
|               | 45,00  | 8,43          | 135.00              | -0.32       | 45,00          |

Tabla 2.18. Resultados numéricos para  $N_x = N_y = N_{xy} \text{ con } G/E_2=0,2 \text{ y } \upsilon_1=0,3.$ 

|               |        | $G/E_2 = 0,3$ |                                              | $v_1 = 0,3$ |       |
|---------------|--------|---------------|----------------------------------------------|-------------|-------|
| $E_{1}/E_{2}$ | heta ° | $K_{+}$       | $eta_{\!\scriptscriptstyle +}^{ \mathrm{o}}$ | K_          | β_°   |
|               | -45,00 | 3,13          | 135,00                                       | -1,43       | 45,00 |
|               | -22,50 | 2,91          | 143,10                                       | -1,35       | 53,10 |
| 2             | 0,00   | 2,85          | 113,40                                       | -1,09       | 56,70 |
|               | 22,50  | 3,67          | 121,50                                       | -0,83       | 49,50 |
|               | 45,00  | 4,01          | 135,00                                       | -0,71       | 45,00 |
|               | -45,00 | 3,08          | 135,00                                       | -1,75       | 45,00 |
|               | -22,50 | 2,84          | 144,00                                       | -1,63       | 55,80 |
| 3             | 0,00   | 3,08          | 107,10                                       | -1,22       | 63,00 |
|               | 22,50  | 4,17          | 119,70                                       | -0,77       | 54,00 |
|               | 45,00  | 4,62          | 135,00                                       | -0,58       | 45,00 |
|               | -45,00 | 3,05          | 135,00                                       | -2,02       | 45,00 |
|               | -22,50 | 2,81          | 144,90                                       | -1,87       | 56,70 |
| 4             | 0,00   | 3,32          | 104,40                                       | -1,35       | 67,50 |
|               | 22,50  | 4,61          | 118,80                                       | -0,74       | 58,50 |
|               | 45,00  | 5,12          | 135,00                                       | -0,50       | 45,00 |
|               | -45,00 | 3,03          | 135,00                                       | -2,26       | 45,00 |
|               | -22,50 | 2,79          | 144,90                                       | -2,09       | 57,60 |
| 5             | 0,00   | 3,54          | 102,60                                       | -1,48       | 69,30 |
|               | 22,50  | 4,99          | 117,90                                       | -0,74       | 63,00 |
|               | 45,00  | 5,56          | 135,00                                       | -0,45       | 45,00 |
|               | -45,00 | 3,02          | 135,00                                       | -2,47       | 45,00 |
|               | -22,50 | 2,76          | 145,80                                       | -2,28       | 58,50 |
| 6             | 0,00   | 3,75          | 101,70                                       | -1,61       | 71,10 |
|               | 22,50  | 5,34          | 117,90                                       | -0,74       | 67,50 |
|               | 45,00  | 5,95          | 135,00                                       | -0,41       | 45,00 |
|               | -45,00 | 3,01          | 135,00                                       | -2,66       | 45,00 |
|               | -22,50 | 2,75          | 145,80                                       | -2,46       | 59,40 |
| 7             | 0,00   | 3,95          | 100,80                                       | -1,73       | 72,90 |
|               | 22,50  | 5,65          | 117,90                                       | -0,75       | 72,90 |
|               | 45,00  | 6,31          | 135,00                                       | -0,38       | 45,00 |
|               | -45,00 | 3,00          | 135,00                                       | -2,84       | 45,00 |
|               | -22,50 | 2,74          | 145,80                                       | -2,63       | 59,40 |
| 8             | 0,00   | 4,14          | 100,80                                       | -1,85       | 73,80 |
|               | 22,50  | 5,95          | 117,00                                       | -0,77       | 77,40 |
|               | 45,00  | 6,65          | 135,00                                       | -0,35       | 45,00 |
|               | -45,00 | 2,99          | 135,00                                       | -3,01       | 45,00 |
|               | -22,50 | 2,73          | 145,80                                       | -2,79       | 59,40 |
| 9             | 0,00   | 4,32          | 100,00                                       | -1,97       | 74,70 |
|               | 22,50  | 6,23          | 117,00                                       | -0,80       | 81,00 |
|               | 45,00  | 6,97          | 135,00                                       | -0,34       | 45,00 |
|               | -45,00 | 2,98          | 135,00                                       | -3,17       | 45,00 |
|               | -22,50 | 2,72          | 145,80                                       | -2,94       | 60,30 |
| 10            | 0,00   | 4,49          | 99,90                                        | -2,09       | 74,70 |
|               | 22,50  | 6,48          | 117,00                                       | -0,83       | 83,70 |
|               | 45.00  | 7.25          | 135.00                                       | -0.32       | 45.00 |

Tabla 2.19. Resultados numéricos para  $N_x = N_y = N_{xy} \text{ con } G/E_2=0,3 \text{ y } \upsilon_1=0,3.$ 

A continuación se exponen una serie de gráficos en los que se representan los valores de las Tablas precedentes para favorecer su análisis a través de la visualización de la influencia de los distintos parámetros involucrados. La Figura 2.15, Figura 2.16 y Figura 2.17 muestran la variación del factor  $K_+$  con respecto a los valores del ángulo  $\theta$ , según la relación  $E_1/E_2$  para cada valor de  $G/E_2$  modelados. De los valores volcados en las Tablas y de la observación de las Figuras, puede concluirse que a medida que  $G/E_2$  crece, el valor de  $K_+$  disminuye en cada relación  $E_1/E_2$ .



Figura 2.15.  $K_+$  versus ángulo  $\theta$  para  $G/E_2=0,1$ , caso  $N_x=N_y=N_{xy}$ .



Figura 2.16.  $K_+$  versus ángulo  $\theta$  para  $G/E_2=0,2$ , caso  $N_x=N_y=N_{xy}$ .



Figura 2.17.  $K_+$  versus ángulo  $\theta$  para  $G/E_2=0,3$ , caso  $N_x=N_y=N_{xy}$ .

Otro hecho destacable es que, para orientaciones de los ejes principales de elasticidad en  $\theta=0^{\circ}$ , 22,5° y 45°, los menores valores en  $K_+$  ocurren para la relación  $E_1/E_2=2$  para cualquiera de los valores de  $G/E_2$  considerados: 0,1, 0,2 y 0,3 y crecen con la relación  $E_1/E_2$ . Esto no es así cuando  $\theta=-45^{\circ}$  y -22,5°. Para estos valores de  $\theta$ , el valor de  $K_+$ , no es afectado significativamente por la variación de  $E_1/E_2$  como muestra la Figura 2.18 y la Figura 2.19.



Figura 2.18.  $K_+$  versus  $E_1/E_2$  cuando  $\theta = -45^\circ$ .



Figura 2.19.  $K_+$  versus  $E_1/E_2$  cuando  $\theta = -22,5^{\circ}$ .

Un hecho de interés que merece ser puntualizado es la aparición de tensiones de compresión por acción de los esfuerzos de corte. Estas tensiones de compresión crecen en magnitud con el aumento de la relación  $E_1/E_2$  y en algunos casos superan a las tensiones de tracción (ver Tabla 2.19). Esto reviste importancia en la estabilidad del equilibrio de placas delgadas. La Figura 2.20, Figura 2.21 y la Figura 2.22 ilustran el comportamiento de la concentración de tensiones de compresión, *K*., en función de la orientación de los ejes de elasticidad,  $\theta$ , para cada relación  $E_1/E_2$  según  $G/E_2=0,1,0,2$  y 0,3.



Figura 2.20. K. versus ángulo  $\theta$  para  $G/E_2=0,1$ , caso  $N_x=N_y=N_{xy}$ .

La relación  $G/E_2$  afecta el valor del ángulo  $\theta$  para el cual se produce el mayor valor de *K*., en cualquiera de las relaciones  $E_1/E_2$ . Para la relación  $G/E_2=0,1$  el valor de  $\theta = -22,5^{\circ}$ produce los mayores valores de *K*., Figura 2.20. Para valores de  $G/E_2=0,2$  y 0,3 el mayor valor de *K*. ocurre cuando el valor  $\theta = -45^{\circ}$ . También es importante resaltar que para  $\theta = -45^{\circ}$ ,  $-22,5^{\circ}$  y 0°, la relación  $E_1/E_2=2$  es la que produce el menor valor en *K*., pero no es así para orientaciones de los ejes de elasticidad a 22,5° o 45°.



Figura 2.21. K. versus ángulo  $\theta$  para  $G/E_2=0,2$ , caso  $N_x=N_y=N_{xy}$ .



Figura 2.22. K. versus ángulo  $\theta$  para  $G/E_2=0,3$ , caso  $N_x=N_y=N_{xy}$ .

Es notable que para los tres valores de la relación  $G/E_2$  considerados, el valor del ángulo  $\theta=22,5^{\circ}$  produce valores del factor *K*. relativamente cercanos. La Figura 2.23 muestra un detalle del comportamiento de *K*. para el valor de  $\theta=22,5^{\circ}$ :



Figura 2.23. K. versus  $E_1/E_2$  cuando  $\theta = 22,5^{\circ}$ .

## 2.3.2.2 Resultados para la solicitación $N_x = N_y = 2N_{xy}$

En este caso el esfuerzo normal aplicado sobre los bordes es  $N_x=N_y=N$  y la tensión de corte toma el valor  $N_{xy}=N/2$ . Es importante aclarar el valor la tensión principal,  $\sigma_1$ , en el modelo sin agujero, expresiones (2.19) y (2.20). El estado de tensiones sobre el dominio sin considerar la perturbación del orificio es:

$$\sigma_{x} = N/h$$

$$\sigma_{y} = N/h$$

$$\tau_{xy} = \frac{N}{2h}$$
(2.26)

Reemplazando las igualdades anteriores en la expresión (2.21), se tiene la tensión principal máxima y mínima sobre todo el dominio, sin la perturbación del orifico:

$$\sigma_1 = \frac{3}{2} \frac{N}{h}$$

$$\sigma_2 = -\frac{N}{h}$$
(2.27)

Acorde con lo explicado para el caso en que  $N_x=N_y=N_{xy}$ , para esta situación, la mayor tensión principal es  $\sigma_1=3N/2h$ , quedando las siguientes expresiones para  $K_+$  y  $K_-$ :

$$K_{+} = \frac{2}{3} \frac{\sigma_{\alpha+}}{N} h$$

$$K_{-} = \frac{2}{3} \frac{\sigma_{\alpha-}}{N} h$$
(2.28)

La Tabla 2.20, Tabla 2.21 y Tabla 2.22 presentan los resultados obtenidos para esta solicitación:

|               | (      | $G/E_2 = 0,1$ |                                                 | $v_1 = 0,3$ | 3     |
|---------------|--------|---------------|-------------------------------------------------|-------------|-------|
| $E_{1}/E_{2}$ | θ°     | $K_+$         | $\beta_{\!\scriptscriptstyle +}^{\mathfrak{o}}$ | Κ.          | β_°   |
|               | -45,00 | 4,12          | 135,00                                          | 0,47        | 56,70 |
|               | -22,50 | 3,75          | 153,90                                          | -0,30       | 46,80 |
| 2             | 0,00   | 3,49          | 97,20                                           | -0,40       | 58,50 |
|               | 22,50  | 4,80          | 116,10                                          | -0,14       | 59,40 |
|               | 45,00  | 5,28          | 135,00                                          | 0,50        | 74,70 |
|               | -45,00 | 4,13          | 135,00                                          | 0,48        | 59,40 |
|               | -22,50 | 3,77          | 153,90                                          | -0,42       | 50,40 |
| 3             | 0,00   | 4,06          | 95,40                                           | -0,53       | 64,80 |
|               | 22,50  | 5,61          | 115,20                                          | -0,17       | 66,60 |
|               | 45,00  | 6,18          | 135,00                                          | 0,47        | 80,10 |
|               | -45,00 | 4,13          | 135,00                                          | 0,47        | 60,30 |
|               | -22,50 | 3,78          | 153,90                                          | -0,55       | 52,20 |
| 4             | 0,00   | 4,54          | 95,40                                           | -0,65       | 68,40 |
|               | 22,50  | 6,28          | 115,20                                          | -0,20       | 75,60 |
|               | 45,00  | 6,94          | 135,00                                          | 0,44        | 82,80 |
|               | -45,00 | 4,14          | 135,00                                          | 0,47        | 60,30 |
|               | -22,50 | 3,79          | 153,90                                          | -0,65       | 53,10 |
| 5             | 0,00   | 4,95          | 95,40                                           | -0,78       | 71,10 |
|               | 22,50  | 6,87          | 115,20                                          | -0,25       | 82,80 |
|               | 45,00  | 7,57          | 135,00                                          | 0,42        | 84,60 |
|               | -45,00 | 4,14          | 135,00                                          | 0,47        | 60,30 |
|               | -22,50 | 3,79          | 153,90                                          | -0,76       | 54,00 |
| 6             | 0,00   | 5,32          | 94,50                                           | -0,91       | 72,00 |
|               | 22,50  | 7,39          | 115,20                                          | -0,32       | 86,40 |
|               | 45,00  | 8,16          | 135,00                                          | 0,40        | 86,40 |
|               | -45,00 | 4,15          | 135,00                                          | 0,47        | 61,20 |
|               | -22,50 | 3,81          | 153,90                                          | -0,85       | 54,00 |
| 7             | 0,00   | 5,66          | 94,50                                           | -1,02       | 72,90 |
|               | 22,50  | 7,85          | 115,20                                          | -0,39       | 89,10 |
|               | 45,00  | 8,66          | 135,00                                          | 0,39        | 88,20 |
|               | -45,00 | 4,15          | 135,00                                          | 0,47        | 61,20 |
|               | -22,50 | 3,81          | 153,90                                          | -0,94       | 54,90 |
| 8             | 0,00   | 5,97          | 94,50                                           | -1,13       | 73,80 |
|               | 22,50  | 8,30          | 114,30                                          | -0,47       | 90,90 |
|               | 45,00  | 9,15          | 135,00                                          | 0,38        | 90,00 |
|               | -45,00 | 4,15          | 135,00                                          | 0,47        | 61,20 |
|               | -22,50 | 3,81          | 153,90                                          | -1,02       | 54,90 |
| 9             | 0,00   | 6,25          | 94,50                                           | -1,23       | 73,80 |
|               | 22,50  | 8,70          | 114,30                                          | -0,55       | 91,80 |
|               | 45,00  | 9,58          | 135,00                                          | 0,37        | 90,90 |
|               | -45,00 | 4,15          | 135,00                                          | 0,47        | 61,20 |
|               | -22,50 | 3,81          | 153,90                                          | -1,09       | 54,90 |
| 10            | 0,00   | 6,51          | 94,50                                           | -1,34       | 74,70 |
|               | 22,50  | 9,08          | 114,30                                          | -0,62       | 92,70 |
|               | 45.00  | 9,99          | 135.00                                          | 0.36        | 92.70 |

Tabla 2.20. Resultados numéricos para  $N_x=N_y=2N_{xy}$  con  $G/E_2=0,1$  y  $v_1=0,3$ .

|               | (      | $G/E_2 = 0,2$ |                     | $v_1 = 0,3$ | 3                   |
|---------------|--------|---------------|---------------------|-------------|---------------------|
| $E_{1}/E_{2}$ | θ°     | $K_+$         | $\beta_{+}^{\circ}$ | K           | $\beta_{-}^{\circ}$ |
|               | -45,00 | 3,25          | 135,00              | 0,08        | 45,00               |
|               | -22,50 | 2,99          | 150,30              | -0,20       | 47,70               |
| 2             | 0,00   | 2,75          | 101,70              | -0,26       | 54,90               |
|               | 22,50  | 3,69          | 117,90              | -0,02       | 58,50               |
|               | 45,00  | 4,06          | 135,00              | 0,44        | 45,00               |
|               | -45,00 | 3,26          | 135,00              | 0,01        | 45,00               |
|               | -22,50 | 2,99          | 151,20              | -0,34       | 50,40               |
| 3             | 0,00   | 3,09          | 99,00               | -0,35       | 60,30               |
|               | 22,50  | 4,24          | 117,00              | -0,04       | 64,80               |
|               | 45,00  | 4,67          | 135,00              | 0,54        | 66,60               |
|               | -45,00 | 3,26          | 135,00              | -0,06       | 45,00               |
|               | -22,50 | 2,99          | 151,20              | -0,44       | 52,20               |
| 4             | 0,00   | 3,39          | 98,10               | -0,44       | 64,80               |
|               | 22,50  | 4,70          | 116,10              | -0,06       | 69,30               |
|               | 45,00  | 5,20          | 135,00              | 0,54        | 73,80               |
|               | -45,00 | 3,27          | 135,00              | -0,12       | 45,00               |
|               | -22,50 | 2,99          | 151,20              | -0,55       | 54,00               |
| 5             | 0,00   | 3,67          | 97,20               | -0,53       | 67,50               |
|               | 22,50  | 5,10          | 116,10              | -0,09       | 72,90               |
|               | 45,00  | 5,65          | 135,00              | 0,54        | 77,40               |
|               | -45,00 | 3,27          | 135,00              | -0,17       | 45,00               |
|               | -22,50 | 2,99          | 152,10              | -0,64       | 54,00               |
| 6             | 0,00   | 3,91          | 97,20               | -0,61       | 69,30               |
|               | 22,50  | 5,47          | 116,10              | -0,13       | 76,50               |
|               | 45,00  | 6,05          | 135,00              | 0,52        | 80,10               |
|               | -45,00 | 3,27          | 135,00              | -0,22       | 45,00               |
|               | -22,50 | 2,99          | 152,10              | -0,73       | 54,90               |
| 7             | 0,00   | 4,13          | 96,30               | -0,70       | 70,20               |
|               | 22,50  | 5,80          | 116,10              | -0,16       | 80,10               |
|               | 45,00  | 6,43          | 135,00              | 0,52        | 81,90               |
|               | -45,00 | 3,27          | 135,00              | -0,26       | 45,00               |
|               | -22,50 | 2,99          | 152,10              | -0,80       | 55,80               |
| 8             | 0,00   | 4,35          | 96,30               | -0,78       | 71,10               |
|               | 22,50  | 6,10          | 115,20              | -0,19       | 82,80               |
|               | 45,00  | 6,77          | 135,00              | 0,51        | 83,70               |
|               | -45,00 | 3,27          | 135,00              | -0,31       | 45,00               |
|               | -22,50 | 2,99          | 152,10              | -0,87       | 55,80               |
| 9             | 0,00   | 4,54          | 96,30               | -0,85       | 72,00               |
|               | 22,50  | 6,40          | 115,20              | -0,23       | 84,60               |
|               | 45,00  | 7,08          | 135,00              | 0,50        | 84,60               |
|               | -45,00 | 3,27          | 135,00              | -0,35       | 45,00               |
| 10            | -22,50 | 2,99          | 152,10              | -0,96       | 56,70               |
| 10            | 0,00   | 4,72          | 96,30               | -0,93       | 72,90               |
|               | 22,50  | 6,66          | 115,20              | -0,26       | 86,40               |
|               | 45,00  | 7,38          | 135,00              | 0,50        | 86,40               |

Tabla 2.21. Resultados numéricos para  $N_x=N_y=2N_{xy}$  con  $G/E_2=0,2$  y  $\nu_1=0,3$ .

|               | (      | $G/E_2 = 0,3$ |                 | $v_1 = 0,3$ | ;     |
|---------------|--------|---------------|-----------------|-------------|-------|
| $E_{1}/E_{2}$ | θ°     | $K_+$         | $\beta_{+}^{o}$ | K.          | β_°   |
|               | -45,00 | 2,89          | 135,00          | -0,09       | 45,00 |
|               | -22,50 | 2,69          | 146,70          | -0,19       | 48,60 |
| 2             | 0,00   | 2,56          | 108,90          | -0,17       | 54,00 |
|               | 22,50  | 3,26          | 120,60          | -0,01       | 63,00 |
|               | 45,00  | 3,53          | 135,00          | 0,33        | 45,00 |
|               | -45,00 | 2,89          | 135,00          | -0,21       | 45,00 |
|               | -22,50 | 2,68          | 147,60          | -0,33       | 51,30 |
| 3             | 0,00   | 2,78          | 103,50          | -0,26       | 59,40 |
|               | 22,50  | 3,68          | 118,80          | -0,01       | 69,30 |
|               | 45,00  | 4,04          | 135,00          | 0,44        | 45,00 |
|               | -45,00 | 2,89          | 135,00          | -0,32       | 45,00 |
|               | -22,50 | 2,68          | 148,50          | -0,44       | 53,10 |
| 4             | 0,00   | 2,99          | 101,70          | -0,35       | 63,00 |
|               | 22,50  | 4,04          | 117,90          | -0,02       | 72,90 |
|               | 45,00  | 4,45          | 135,00          | 0,52        | 45,00 |
|               | -45,00 | 2,89          | 135,00          | -0,40       | 45,00 |
|               | -22,50 | 2,67          | 148,50          | -0,55       | 54,90 |
| 5             | 0,00   | 3,19          | 99,90           | -0,42       | 65,70 |
|               | 22,50  | 4,36          | 117,00          | -0,04       | 74,70 |
|               | 45,00  | 4,81          | 135,00          | 0,55        | 65,70 |
|               | -45,00 | 2,89          | 135,00          | -0,48       | 45,00 |
| 6             | -22,50 | 2,67          | 149,40          | -0,64       | 54,90 |
| 0             | 0,00   | 3,37          | 99,90           | -0,50       | 67,50 |
|               | 22,50  | 4,65          | 117,00          | -0,05       | 77,40 |
|               | 45,00  | 5,13          | 135,00          | 0,56        | 71,10 |
|               | -45,00 | 2,88          | 135,00          | -0,56       | 45,00 |
|               | -22,50 | 2,66          | 149,40          | -0,73       | 55,80 |
| 7             | 0,00   | 3,55          | 99,00           | -0,57       | 69,30 |
|               | 22,50  | 4,90          | 117,00          | -0,06       | 79,20 |
|               | 45,00  | 5,43          | 135,00          | 0,56        | 74,70 |
|               | -45,00 | 2,88          | 135,00          | -0,62       | 45,00 |
|               | -22,50 | 2,66          | 149,40          | -0,81       | 56,70 |
| 8             | 0,00   | 3,70          | 98,10           | -0,64       | 70,20 |
|               | 22,50  | 5,15          | 116,10          | -0,08       | 78,30 |
|               | 45,00  | 5,70          | 135,00          | 0,56        | 76,50 |
|               | -45,00 | 2,88          | 135,00          | -0,70       | 45,00 |
|               | -22,50 | 2,66          | 149,40          | -0,90       | 56,70 |
| 9             | 0,00   | 3,86          | 98,10           | -0,71       | 71,10 |
|               | 22,50  | 5,39          | 116,10          | -0,12       | 81,00 |
|               | 45,00  | 5,96          | 135,00          | 0,56        | 78,30 |
|               | -45,00 | 2,88          | 135,00          | -0,75       | 45,00 |
|               | -22,50 | 2,66          | 149,40          | -0,96       | 57,60 |
| 10            | 0,00   | 4,00          | 98,10           | -0,77       | 72,00 |
|               | 22,50  | 5,60          | 116,10          | -0,14       | 81,90 |
|               | 45,00  | 6,20          | 135,00          | 0,55        | 81,00 |

Tabla 2.22. Resultados numéricos para  $N_x=N_y=2N_{xy}$  con  $G/E_2=0,3$  y  $\nu_1=0,3$ .

Capítulo 2

La Figura 2.24, Figura 2.25 y Figura 2.26 muestran la variación del factor  $K_+$  con respecto a los valores del ángulo  $\theta$ , según la relación  $E_1/E_2$  para cada valor de  $G/E_2$  modelados. De la observación de las mismas, se nota que, para el valor de  $G/E_2=0,3$  los valores de  $K_+$  son los menores para cada relación  $E_1/E_2$ , comportamiento similar al de  $K_+$  cuando se consideró  $N_x=N_y=N_{xy}$ .



Figura 2.24.  $K_+$  versus ángulo  $\theta$  para  $G/E_2=0,1$ , caso  $N_x=N_y=N_{xy}/2$ .



Figura 2.25.  $K_+$  versus ángulo  $\theta$  para  $G/E_2=0,2$ , caso  $N_x=N_y=N_{xy}/2$ .



Figura 2.26.  $K_+$  versus ángulo  $\theta$  para  $G/E_2=0,3$ , caso  $N_x=N_y=N_{xy}/2$ .

De las Tablas precedentes y de los gráficos en que se han volcado sus valores, se concluye en que para orientaciones de los ejes principales de elasticidad  $\theta=0^{\circ}$ , 22,5° y 45° los valores de  $K_+$  crecen con la relación  $E_1/E_2$ .

En cambio para valores de  $\theta$ = -45° y -22,5°, los valores de  $K_+$  son independientes de la relación  $E_1/E_2$ , Figura 2.27 y Figura 2.28.



Figura 2.27.  $K_+$  versus  $E_1/E_2$  cuando  $\theta = -45^\circ$ , cuando  $N_x = N_y = N_{xy}/2$ .



Figura 2.28.  $K_+$  versus  $E_1/E_2$  cuando  $\theta = -22,5^\circ$ , cuando  $N_x = N_y = N_{xy}/2$ .

En este caso, las magnitudes de las tensiones de compresión son menores que en el anterior, en virtud de que el esfuerzo de corte aplicado es menor.

Los resultados numéricos de *K*., de la Tabla 2.20, para  $G/E_2=0,1$  se muestran en forma de gráfico en la Figura 2.29. En ella se observa que para las orientaciones de los ejes de elasticidad en  $\theta$ =-45° y 45° no ocurren valores de compresión para ninguna relación  $E_1/E_2$ . Además es notable que solamente para dos valores de  $\theta$  se supera el valor unidad del factor *K*.. Cuando  $\theta$ =-22,5° con los valores de  $E_1/E_2$ =9 y 10 y en el caso de  $\theta$ =-0° con los valores de  $E_1/E_2$ =7, 8, 9 y 10



Figura 2.29. K. versus ángulo  $\theta$  para  $G/E_2=0,1$ , caso  $N_x=N_y=N_{xy}/2$ .

Los resultados numéricos de *K*., de la Tabla 2.21, para  $G/E_2=0,2$  se muestran en forma de gráfico en la Figura 2.30. En ella se nota que para ninguna orientación de los ejes principales de elasticidad,  $\theta$ , se obtiene valores de *K*. superiores a la unidad.



Figura 2.30. K. versus ángulo  $\theta$  para  $G/E_2=0,2$ , caso  $N_x=N_y=N_{xy}/2$ .

Los datos numéricos de la Tabla 2.22, caso en que  $G/E_2=0,3$ , se representaron gráficamente en la Figura 2.31. Cuando la orientación de los ejes de elasticidad se encuentran en  $\theta=45^{\circ}$  no se producen valores de compresión. También se hace notar que para cualquier valor de  $\theta$ , el valor de K. no supera el valor unidad.



Figura 2.31. K. versus ángulo  $\theta$  para  $G/E_2=0,3$ , caso  $N_x=N_y=N_{xy}/2$ .

2.3.2.3 Resultados para la solicitación  $N_x = N_y = N_{xy}/2$ 

En este caso la tensión normal aplicada sobre los bordes es  $N_x=N_y=N$  y la tensión de corte toma el valor  $N_{xy}=2N$ . El estado de tensiones sobre el dominio sin considerar la perturbación del orificio es:

$$\sigma_{x} = N/h$$

$$\sigma_{y} = N/h$$

$$\tau_{xy} = 2\frac{N}{h}$$
(2.29)

Reemplazando las igualdades anteriores en la expresión (2.21), se tiene la tensión principal máxima y mínima sobre todo el dominio, sin la perturbación del orifico:

$$\sigma_1 = 3\frac{N}{h}$$

$$\sigma_2 = -\frac{N}{h}$$
(2.30)

Acorde a lo explicado para los casos anteriores, para esta situación, la mayor tensión principal es  $\sigma_1=3N/h$  quedando las siguientes expresiones para  $K_+$  y  $K_-$ :

$$K_{+} = \frac{1}{3} \frac{\sigma_{\alpha+}}{N} h$$

$$K_{-} = \frac{1}{3} \frac{\sigma_{\alpha-}}{N} h$$
(2.31)

Para esta solicitación los resultados numéricos de  $K_+$  y  $K_-$  se exponen en las siguientes tablas, Tabla 2.23, Tabla 2.24 y Tabla 2.25:

|               | (      | $G/E_2 = 0,1$ |                 | $v_1 = 0,3$ | ;     |
|---------------|--------|---------------|-----------------|-------------|-------|
| $E_{1}/E_{2}$ | θ°     | $K_+$         | $\beta_{+}^{o}$ | K.          | β_°   |
|               | -45,00 | 4,60          | 135,00          | -3,35       | 45,00 |
|               | -22,50 | 4,08          | 150,30          | -3,07       | 58,50 |
| 2             | 0,00   | 3,69          | 102,60          | -2,18       | 71,10 |
|               | 22,50  | 5,52          | 117,90          | -2,04       | 36,00 |
|               | 45,00  | 6,24          | 135,00          | -2,17       | 45,00 |
|               | -45,00 | 4,52          | 135,00          | -4,01       | 45,00 |
|               | -22,50 | 4,01          | 150,30          | -3,67       | 60,30 |
| 3             | 0,00   | 4,31          | 100,80          | -2,58       | 74,70 |
|               | 22,50  | 6,50          | 117,00          | -1,93       | 36,00 |
|               | 45,00  | 7,35          | 135,00          | -2,02       | 45,00 |
|               | -45,00 | 4,48          | 135,00          | -4,54       | 45,00 |
|               | -22,50 | 3,95          | 150,30          | -4,18       | 60,30 |
| 4             | 0,00   | 4,85          | 99,90           | -2,96       | 75,60 |
|               | 22,50  | 7,32          | 117,00          | -1,87       | 36,00 |
|               | 45,00  | 8,26          | 135,00          | -1,95       | 45,00 |
|               | -45,00 | 4,45          | 135,00          | -5,01       | 45,00 |
|               | -22,50 | 3,93          | 150,30          | -4,62       | 61,20 |
| 5             | 0,00   | 5,33          | 99,00           | -3,30       | 7,40  |
|               | 22,50  | 8,02          | 116,10          | -1,82       | 36,90 |
|               | 45,00  | 9,07          | 135,00          | -1,89       | 45,00 |
|               | -45,00 | 4,42          | 135,00          | -5,43       | 45,00 |
|               | -22,50 | 3,90          | 152,10          | -5,02       | 61,20 |
| 6             | 0,00   | 5,74          | 98,10           | -3,60       | 77,40 |
|               | 22,50  | 8,66          | 116,10          | -1,78       | 36,90 |
|               | 45,00  | 9,78          | 135,00          | -1,84       | 45,00 |
|               | -45,00 | 4,41          | 135,00          | -5,81       | 45,00 |
|               | -22,50 | 3,89          | 151,20          | -5,38       | 61,20 |
| 7             | 0,00   | 6,13          | 98,10           | -3,88       | 78,30 |
|               | 22,50  | 9,24          | 116,10          | -1,76       | 36,90 |
|               | 45,00  | 10,42         | 135,00          | -1,81       | 45,00 |
|               | -45,00 | 4,39          | 135,00          | -6,15       | 45,00 |
|               | -22,50 | 3,88          | 151,20          | -5,69       | 61,20 |
| 8             | 0,00   | 6,48          | 98,10           | -4,13       | 78,30 |
|               | 22,50  | 9,77          | 116,10          | -1,86       | 94,50 |
|               | 45,00  | 11,00         | 135,00          | -1,78       | 45,00 |
|               | -45,00 | 4,37          | 135,00          | -6,47       | 45,00 |
|               | -22,50 | 3,87          | 151,20          | -6,00       | 62,10 |
| 9             | 0,00   | 6,81          | 98,10           | -4,36       | 78,30 |
|               | 22,50  | 10,26         | 116,10          | -2,00       | 94,50 |
|               | 45,00  | 11,54         | 135,00          | -1,76       | 45,00 |
|               | -45,00 | 4,36          | 135,00          | -6,76       | 45,00 |
|               | -22,50 | 3,86          | 151,20          | -6,27       | 62,10 |
| 10            | 0,00   | 7,09          | 97,20           | -4,60       | 79,20 |
|               | 22,50  | 10,71         | 116,10          | -2,14       | 84,60 |
|               | 45,00  | 12,05         | 135,00          | -1,74       | 45,00 |

Tabla 2.23. Resultados numéricos para  $N_x = N_y = N_x/2_y \text{ con } G/E_2 = 0,1 \text{ y } \upsilon_1 = 0,3.$ 

|               | (      | $G/E_2 = 0,2$ |                 | $v_1 = 0,3$ |       |  |
|---------------|--------|---------------|-----------------|-------------|-------|--|
| $E_{1}/E_{2}$ | θ°     | $K_+$         | $\beta_{+}^{o}$ | <i>K</i> .  | β_°   |  |
| 2             | -45,00 | 3,73          | 135,00          | -2,94       | 45,00 |  |
|               | -22,50 | 3,38          | 145,80          | -2,69       | 56,70 |  |
|               | 0,00   | 3,21          | 108,90          | -2,01       | 63,90 |  |
|               | 22,50  | 4,49          | 120,60          | -1,82       | 41,40 |  |
|               | 45,00  | 5,01          | 135,00          | -1,88       | 45,00 |  |
| 3             | -45,00 | 3,65          | 135,00          | -3,50       | 45,00 |  |
|               | -22,50 | 3,30          | 146,70          | -3,17       | 58,50 |  |
|               | 0,00   | 3,60          | 105,30          | -2,27       | 69,30 |  |
|               | 22,50  | 5,21          | 118,80          | -1,70       | 42,30 |  |
|               | 45,00  | 5,84          | 135,00          | -1,74       | 45,00 |  |
|               | -45,00 | 3,60          | 135,00          | -3,97       | 45,00 |  |
|               | -22,50 | 3,25          | 146,70          | -3,60       | 59,40 |  |
| 4             | 0,00   | 3,97          | 102,60          | -2,52       | 72,00 |  |
|               | 22,50  | 5,82          | 117,90          | -1,63       | 43,20 |  |
|               | 45,00  | 6,54          | 135,00          | -1,64       | 45,00 |  |
| 5             | -45,00 | 3,56          | 135,00          | -4,39       | 45,00 |  |
|               | -22,50 | 3,20          | 146,70          | -3,96       | 60,30 |  |
|               | 0,00   | 4,31          | 101,70          | -2,76       | 73,80 |  |
|               | 22,50  | 6,35          | 117,90          | -1,59       | 43,20 |  |
|               | 45,00  | 7,15          | 135,00          | -1,59       | 45,00 |  |
| 6             | -45,00 | 3,54          | 135,00          | -4,75       | 45,00 |  |
|               | -22,50 | 3,17          | 146,70          | -4,31       | 60,30 |  |
|               | 0,00   | 4,62          | 100,80          | -2,99       | 75,60 |  |
|               | 22,50  | 6,83          | 117,90          | -1,74       | 44,10 |  |
|               | 45,00  | 7,69          | 135,00          | -1,54       | 45,00 |  |
|               | -45,00 | 3,52          | 135,00          | -5,09       | 45,00 |  |
|               | -22,50 | 3,15          | 146,70          | -4,62       | 61,20 |  |
| 7             | 0,00   | 4,90          | 100,80          | -3,21       | 76,50 |  |
|               | 22,50  | 7,27          | 117,00          | -1,53       | 45,00 |  |
|               | 45,00  | 8,19          | 135,00          | -1,52       | 45,00 |  |
| 8             | -45,00 | 3,50          | 135,00          | -5,41       | 45,00 |  |
|               | -22,50 | 3,14          | 146,70          | -4,90       | 61,20 |  |
|               | 0,00   | 5,18          | 99,90           | -3,43       | 76,50 |  |
|               | 22,50  | 7,68          | 117,00          | -1,51       | 45,00 |  |
|               | 45,00  | 8,65          | 135,00          | -1,49       | 45,00 |  |
| 9             | -45,00 | 3,49          | 135,00          | -5,69       | 45,00 |  |
|               | -22,50 | 3,12          | 147,60          | -5,18       | 61,20 |  |
|               | 0,00   | 5,43          | 99,90           | -3,62       | 77,40 |  |
|               | 22,50  | 8,07          | 117,00          | -1,56       | 89,10 |  |
|               | 45,00  | 9,08          | 135,00          | -1,47       | 45,00 |  |
| 10            | -45,00 | 3,48          | 135,00          | -5,97       | 45,00 |  |
|               | -22,50 | 3,11          | 147,60          | -5,43       | 61,20 |  |
|               | 0,00   | 5,67          | 99,00           | -3,81       | 77,40 |  |
|               | 22,50  | 8,43          | 117,00          | -1,64       | 90,90 |  |
|               | 45,00  | 9,48          | 135,00          | -1,44       | 45,00 |  |

Tabla 2.24. Resultados numéricos para  $N_x = N_y = N_{xy}/2 \text{ con } G/E_2 = 0,2 \text{ y } \upsilon_1 = 0,3.$ 

|               | $G/E_2 = 0,3$ |       | $v_1 = 0,3$     |       |       |
|---------------|---------------|-------|-----------------|-------|-------|
| $E_{1}/E_{2}$ | θ°            | $K_+$ | $\beta_{+}^{o}$ | Κ.    | β_°   |
| 2             | -45,00        | 3,36  | 135,00          | -2,76 | 45,00 |
|               | -22,50        | 3,14  | 141,30          | -2,55 | 54,90 |
|               | 0,00          | 3,19  | 116,10          | -2,02 | 58,50 |
|               | 22,50         | 4,09  | 123,30          | -1,76 | 45,90 |
|               | 45,00         | 4,49  | 135,00          | -1,75 | 45,00 |
| 3             | -45,00        | 3,27  | 135,00          | -3,29 | 45,00 |
|               | -22,50        | 3,04  | 141,30          | -2,98 | 56,70 |
|               | 0,00          | 3,43  | 109,80          | -2,20 | 65,70 |
|               | 22,50         | 4,69  | 120,60          | -1,64 | 47,70 |
|               | 45,00         | 5,20  | 135,00          | -1,61 | 45,00 |
| 4             | -45,00        | 3,21  | 135,00          | -3,73 | 45,00 |
|               | -22,50        | 2,97  | 142,20          | -3,36 | 58,50 |
|               | 0,00          | 3,70  | 106,20          | -2,39 | 69,30 |
|               | 22,50         | 5,20  | 119,70          | -1,58 | 49,50 |
|               | 45,00         | 5,79  | 135,00          | -1,52 | 45,00 |
| 5             | -45,00        | 3,18  | 135,00          | -4,11 | 45,00 |
|               | -22,50        | 2,93  | 142,20          | -3,70 | 59,40 |
|               | 0,00          | 3,96  | 104,40          | -2,59 | 72,00 |
|               | 22,50         | 5,64  | 118,80          | -1,54 | 51,30 |
|               | 45,00         | 6,31  | 135,00          | -1,47 | 45,00 |
| 6             | -45,00        | 3,16  | 135,00          | -4,45 | 45,00 |
|               | -22,50        | 2,90  | 142,20          | -4,01 | 59,40 |
|               | 0,00          | 4,22  | 103,50          | -2,78 | 72,90 |
|               | 22,50         | 6,05  | 118,80          | -1,51 | 53,10 |
|               | 45,00         | 6,78  | 135,00          | -1,41 | 45,00 |
| 7             | -45,00        | 3,14  | 135,00          | -4,78 | 45,00 |
|               | -22,50        | 2,88  | 142,20          | -4,29 | 60,30 |
|               | 0,00          | 4,44  | 102,60          | -2,96 | 74,70 |
|               | 22,50         | 6,43  | 117,90          | -1,49 | 54,90 |
|               | 45,00         | 7,20  | 135,00          | -1,39 | 45,00 |
| 8             | -45,00        | 3,12  | 135,00          | -5,06 | 45,00 |
|               | -22,50        | 2,86  | 142,20          | -4,55 | 60,30 |
|               | 0,00          | 4,67  | 101,70          | -3,14 | 75,60 |
|               | 22,50         | 6,78  | 117,90          | -1,64 | 76,50 |
|               | 45,00         | 7,60  | 135,00          | -1,36 | 45,00 |
| 9             | -45,00        | 3,10  | 135,00          | -5,33 | 45,00 |
|               | -22,50        | 2,84  | 143,10          | -4,80 | 61,20 |
|               | 0,00          | 4,87  | 101,70          | -3,32 | 75,60 |
|               | 22,50         | 7,10  | 117,90          | -1,51 | 82,80 |
|               | 45,00         | 7,97  | 135,00          | -1,34 | 45,00 |
| 10            | -45,00        | 3,09  | 135,00          | -5,59 | 45,00 |
|               | -22,50        | 2,82  | 143,10          | -5,04 | 61,20 |
|               | 0,00          | 5,08  | 100,80          | -3,48 | 76,50 |
|               | 22,50         | 7,40  | 117,90          | -1,55 | 85,50 |
|               | 45,00         | 8,31  | 135,00          | -1,31 | 45,00 |

Tabla 2.25. Resultados numéricos para  $N_x = N_y = N_{xy}/2 \text{ con } G/E_2 = 0,3 \text{ y } \upsilon_1 = 0,3.$ 

La Figura 2.32, la Figura 2.33 y la Figura 2.34 muestran la variación del factor  $K_+$  con respecto a los valores del ángulo  $\theta$ , según la relación  $E_1/E_2$  para cada valor de  $G/E_2$  modelados. De la observación de las mismas, se nota que los valores de  $K_+$  son menores para cada relación  $E_1/E_2$  a medida que  $G/E_2$  crece, comportamiento similar al de  $K_+$  para los casos anteriores de  $N_x=N_y=N_{xy}$  y  $N_x=N_y=2N_{xy}$ .



Figura 2.32.  $K_+$  versus ángulo  $\theta$  para  $G/E_2=0,1$ , caso  $N_x=N_y=2N_{xy}$ .



Figura 2.33.  $K_+$  versus ángulo  $\theta$  para  $G/E_2=0,2$ , caso  $N_x=N_y=2N_{xy}$ .



Figura 2.34.  $K_+$  versus ángulo  $\theta$  para  $G/E_2=0,3$ , caso  $N_x=N_y=2N_{xy}$ .

Se observa, al igual que el caso anterior, que para valores de  $\theta=0^{\circ}$ , 22,5° y 45°, el factor  $K_{+}$  crece con la relación  $E_{1}/E_{2}$ .

Cuando  $\theta$ = -45° y -22,5°, la relación  $E_1/E_2$  incide muy poco (y en sentido inverso), siendo más significativa la influencia de la relación  $G/E_2$ , Figura 2.35 y Figura 2.36.



Figura 2.35.  $K_+$  versus  $E_1/E_2$  cuando  $\theta = -45^\circ$ , cuando  $N_x = N_y = 2N_{xy}$ .



Figura 2.36.  $K_+$  versus  $E_1/E_2$  cuando  $\theta = -22,5^\circ$ , cuando  $N_x = N_y = 2N_{xy}$ .

En cuanto a las tensiones de compresión (*K*.), obviamente en este caso son mayores por la mayor magnitud de  $N_{xy}$  aplicado.

La Figura 2.37, Figura 2.38 y Figura 2.39 muestran la variación del factor K., para distintos valores del ángulo  $\theta$  y de las relaciones  $E_1/E_2$  y  $G/E_2$ .

Al igual que en el caso de  $K_+$ , los valores de  $K_-$  disminuyen en valor absoluto conforme aumenta la relación  $G/E_2$ .

Asimismo, se observa en cada una de las figuras que *K*. crece en magnitud con el aumento de  $E_1/E_2$ . A diferencia de lo que ocurre con  $K_+$ , este comportamiento es notorio para valores de  $\theta$ =-45°, -22,5° y 0°.



Figura 2.37. K. versus ángulo  $\theta$  para  $G/E_2=0,1$ , caso  $N_x=N_y=2N_{xy}$ .



Figura 2.38. K. versus ángulo  $\theta$  para  $G/E_2=0,2$ , caso  $N_x=N_y=2N_{xy}$ .



Figura 2.39. K. versus ángulo  $\theta$  para  $G/E_2=0,3$ , caso  $N_x=N_y=2N_{xy}$ .

En el caso de  $\theta$ = 22,5° y 45°, el comportamiento es similar aunque no tan evidente, Figura 2.40.



Figura 2.40. K. versus  $E_1/E_2$  cuando  $\theta = 45^\circ$ , cuando  $N_x = N_y = 2N_{xy}$ .

## **2.4 CONCLUSIONES.**

Distintas configuraciones de materiales ortótropos y orientaciones de los ejes de elasticidad fueron analizados en forma individual para cada estado de cargas aplicadas en una placa cuadrada con un pequeño orificio circular. Los casos de cargas considerados son: estado de tracción biaxial,  $N_x=N_y$ , y una serie de situaciones con tensiones de corte,  $N_x=N_y=2N_{xy}$ ,  $N_x=N_y=N_{xy}$  y  $N_x=N_y=N_{xy}/2$ . En lo que sigue, se analizó la variación de  $K_+$  según las tensiones de corte aplicadas al modelo.

Se notó una marcada influencia de la variación de los estados de carga en los valores de los parámetros determinados para las distintas relaciones de  $E_1/E_2$ ,  $G/E_2$  y orientación de los ejes principales de elasticidad,  $\theta$ . Dicha influencia se evidencia en los siguientes gráficos.

La Figura 2.41 muestra la variación de  $K_+$  según los distintos estados de cargas aplicados al modelo para un valor de  $\theta$ =45° y  $G/E_2$ =0,1. Sobre el eje de las abcisas, se representan los distintos estados de carga. El primero de ellos es el estado de tracción biaxial,  $N_x=N_y$ , luego el caso en que la tensión de corte aplicada es la mitad de la tensión normal,  $N_x=N_y=2N_{xy}$  hasta el último caso en que  $N_{xy}$  es el doble de la tensión normal aplicada, es decir  $N_x=N_y=N_{xy}/2$ . Se observa que todos los casos con  $N_{xy}$  poseen mayores valores de  $K_+$  con respecto al estado de tracción biaxial El caso con tensiones de corte con menor valor de  $K_+$  es para  $N_x=N_y=2N_{xy}$ .



Figura 2.41.  $K_+$  versus carga aplicada sobre la placa para  $\theta$ =45° y  $G/E_2$ =0,1.

El comportamiento es similar cuando  $G/E_2=0,3$ . La Figura 2.42 muestra la variación de  $K_+$  según los distintos estados de cargas aplicados al modelo para un valor de  $\theta=45^\circ$  y  $G/E_2=0,3$ .



Figura 2.42.  $K_+$  versus carga aplicada sobre la placa para  $\theta$ =45° y  $G/E_2$ =0,3.

En las figuras anteriores, se observa que la presencia de  $N_{xy}$  incrementa la magnitud de  $K_+$  que crece con  $N_{xy}$ . Esto no es así cuando los ejes principales de elasticidad tienen una orientación de  $\theta$ =-45°. La Figura 2.43 muestra la variación de  $K_+$  según los distintos estados de cargas aplicados al modelo para un valor de  $\theta$ =-45° y  $G/E_2$ =0,1. En ella se hace notar que no hay diferencias apreciables del factor  $K_+$  según las relaciones  $E_1/E_2$  cuando están presentes las tensiones de corte  $N_{xy}$ .



Figura 2.43.  $K_+$  versus carga aplicada sobre la placa para  $\theta = -45^{\circ}$  y  $G/E_2 = 0,1$ .

Un comportamiento similar, al observado en la figura anterior, se produce para el valor de  $\theta$ =-45° y  $G/E_2$ =0,3, Figura 2.44. Aunque para esta relación de  $G/E_2$  las diferencias de  $K_+$  para el caso de tracción biaxial,  $N_x = N_y$  y  $N_{xy} = 0$ , para distintas relaciones  $E_1/E_2$  no son tan marcadas con respecto al caso anterior.



Figura 2.44.  $K_+$  versus carga aplicada sobre la placa para  $\theta$ =-45° y  $G/E_2$ =0,3.

De los casos con tensiones de corte analizados se concluye que dada una combinación de la relación  $E_1/E_2$  y un ángulo de orientación de los ejes principales de elasticidad,  $\theta$ , para mayores valores de  $G/E_2$  el valor de  $K_+$  disminuye. Esta situación no es tan clara cuando la solicitación de la placa es un estado de tracción biaxial, ver Figura 2.10.

Si el modelo posee tensiones de corte, para una combinación de relación  $E_1/E_2$  y  $G/E_2$ , la orientación de los ejes principales de elasticidad en  $\theta$ =-45° produce los menores valores de  $K_+$ . Aunque esa orientación de los ejes principales de elasticidad, produce el mayor valor de K. salvo para el caso en que  $G/E_2$ =0,1 y las tensiones de corte aplicadas tienen igual magnitud que las tensiones normales,  $N_x=N_y=N_{xy}=$ , ver Figura 2.20, donde el valor de  $\theta$ =-22,5° produce el mayor valor de  $K_-$ .

Una amplia variedad de situaciones fueron consideradas en el presente capítulo. Las

mismas ponen en evidencia la importancia de la orientación de los ejes principales de elasticidad en el valor del factor de concentración de tensiones sobre un pequeño orificio circular presente en una placa ortótropa. Para algunos materiales ortótropos cuyas constantes elásticas se correspondan con las relaciones  $E_1/E_2$ ,  $G/E_2$  presentes en este capítulo, y el valor del módulo  $v_1$ =0,3, se encontraron valores del ángulo  $\theta$  para los cuales el valor de  $K_+$  es menor al que se daría si los ejes principales de elasticidad coincidieran con los ejes coordenados. La variación del factor  $K_-$  también fue estudiada.

El análisis anterior se realizó con una herramienta numérica relativamente sencilla como es el método de elementos finitos aplicado a través de un código comercial.

# 2.5 BIBLIOGRAFÍA.

- [1] G. Kirsch, "Die theorie der elastizität und die bedürfnisse der festigkeislehre", Zeit Verem, *Deutsch Ing.*, Vol. 42, 797-807 (1898).
- [2] P. A. A. Laura and V. Sonzogni., "Kirsch Problem and the Lower Natural Frequencies of a Clamped Square-Plate", *Ocean Engineering*, Vol. 24 No 10, 985-988 (1997).
- [3] P. A. A. Laura, M. J. Maurizi, "Introducción a la Mecánica de los Sólidos", EUDEBA, Buenos Aires (1979).
- [4] S.G. Lekhnitskii, "Anisotropic Plates", Gordon and Breach Science Publishers, New York (1968).
- [5] M. Sánchez., N. Troyani, "Factor Teórico de Concentración de esfuerzos en piezas cortas de materiales anisotrópicos", ENIEF 2003, *Mecánica Computacional*, Vol. XXII, 2135-2144 (2003).
- [6] S. Maiz, R. E. Rossi, P. A. A. Laura, D. V. Bambill, "Efectos de la ortotropía sobre el factor de concentración de tensiones: extensión del problema de Kirsch", ENIEF 2004, *Mecánica Computacional*, Vol. XXIII, 673-692 (2004).
- [7] ALGOR 20, "Linear dynamic analysis", Algor Inc. (2007).
- [8] D. V. Bambill, A. Susca, P. A. A. Laura, S. Maiz, "Concentración de tensiones en placa ortótropa sometida a esfuerzo biaxial", MECOM 2005, *Mecánica Computacional*, Vol. XXIV, 2675-2694 (2005).
- [9] A. Susca, D. V. Bambill, C. A. Rossit, "Análisis de la concentración de tensiones en placas ortótropas con orificio circular sometidas simultáneamente a cargas normales y tangenciales", ENIEF 2007, *Mecánica Computacional*, Vol. XXVI, 386-405 (2007).
- [10] S. Timoshenko, J. N. Goodier, "*Theory of elasticity*", Mc Graw-Hill Book Company, Inc., New York, N. Y., (1951).