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Abstract

In this paper we analyze the existence of stable matchings in a two-

sided large market in which workers are assigned to firms. The market

has a continuum of workers while the set of firms is countably infinite. We

show that, under certain reasonable assumptions on the preference corre-

spondences, stable matchings not only exist but are also Pareto optimal.
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1 Introduction

Matching theory can be broadly characterized as the field of Mathematical Eco-
nomics that studies the allocation of resources in “thin” two-sided markets, i.e.
markets in which the goods are indivisible and heterogeneous [7]. The semi-
nal work of Gale and Shapley ([8]) laid the ground for further developments,
introducing the fundamental notion of stability as a solution to the problem of
assigning elements of one side of the market to elements in the other one. From
then on, a large body of literature grew up, motivated by the insights on the
inner workings of real-world markets provided by matching theory [20]. Appli-
cations to particular instances (NRMP, kidney transplants, school admissions,
etc.) spurred further interest in the field [23].

Of particular relevance for this paper are the mathematical developments in
this area. Starting from the analyses of many-to-one and many-to-many match-
ing problems, some results indicate ways in which the concept of stability can be
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EEyN-UNSAM are gratefully acknowledged.

1



extended, from the one-to-one case to those contexts (see [12], [6], [17], among
many others). Interestingly, until very recently, all these advances focused on
markets with a finite number of participants on both sides. Now the scope has
been widened as to encompass infinities in one side of the market [1], [3].

The purpose of this work is to go still further in the direction of analyzing
large markets in many-to-one settings. We adopt, for the sake of clarity, the view
that one side of the market is constituted by “workers” and the other by “firms”.
We assume the former constitute a continuum, while the latter are countably
infinite. From a mathematical point of view, it is a natural generalization of the
work of [3]. Nevertheless, from an economic point of view it captures, among
others, the idea of large labor markets on both sides, with perfect competition
on workers side, in the sense of having “many more workers than firms”, being
the latter class of countably infinite cardinality.

On the one hand, double infinity of agents has already been considered in the
literature on matching problems mainly in buyer/seller settings. For instance,
[9] and [10] consider a continuum of agents on both sides of the assignment
problem. Nevertheless, this kind of matching problem differs in many ways
from ours, as for instance by assuming the transferability of utilities. In [14]
each side of the market has also a continuum of agents, although under the
assumption of imperfectly transferable utility functions. More recently, [19]
developed a general nonlinear duality theory and applied it to matching theory
with double (uncountable) infinities of agents. Their structure is also different
from ours since they use a distributional approach á la [11] to represent the
buyers and sellers. Their main assumptions are also different.

On the other hand, double infinity has interest by itself and its importance
goes beyond the representation of large markets. Actually, as it is known in the
literature on general equilibrium theory with infinite dimensional spaces, infinite
commodity spaces arise naturally when one considers infinite time horizon or
uncertainty about an infinite number of states of the world (see [18]). Thus, the
aim of this paper is to include and adapt those cases to a matching problem.
One of the real-life examples we can consider is that of a large market of labor
with mobility along countries, provinces or states. If the same firm is located
in several places (countries, provinces, states, etc) one can see it as a different
firm in the same way that the same kind of physical good located in different
places is considered as if it were a class of different goods ([4], pgs. 29-30). If
we assume infinitely (yet countable) many places in the world to localize a firm,
then it is clear that we need a more general framework than that of [3]. Let us
note that this represents a real phenomena since many firms are located all over
the world with labor mobility arising even in the form of illegal immigration.
An indeed this is a matching problem.

Another real-world related situation arises when allocations are along time
and the horizon is infinite (i.e. without a previously defined final period). For
instance, let us consider a large labor market given by a mass or workers who
have to decide what firm they prefer along time. Even though there is a finite
set of firms over which they have to make their choices in each period, if time is
unbounded, it is equivalent, from a mathematical viewpoint, to have countably

2



infinite firms.
Alternatively, we can consider a case in which assignments are subject to

uncertainty, with a countably infinite set of states of the world. In this case,
one (type of) worker may choose firm f if state s1 takes place, or she may prefer
f ′ if state s2 happens instead. A real life case example is when a worker has to
decide whether to apply for a job in a firm belonging to an industry that could
or could not be benefited by economic policies to be determined in an upcoming
election. One can go a step further and add that this decision may depend upon
the candidate who could win the election. For instance, the fortunes of a firm
may depend on whether the election will be won by a protectionist or a pro
free-trade candidate, conditioning in turn the election of the worker. Another
case may arise when the worker looks for being hired by a firm on the basis
of future profits that may depend on external factors like the market price of
commodities. Small countries take international prices as given, which affects
the return of its firms. In this case a worker may decide on the basis of (for
example) the business sentiment in central countries. In all these cases, the
firm to which a worker will try to match depends on the state of the world. It
these are non-finite, it is again equivalent to having a countably infinite number
of firms. So, apart from being mathematically interesting, this problem has
economic and social relevance.

On the other hand, the consideration of a continuum of workers is also of
interest on itself since many real world matching markets are large. Indeed, in
the US and in Latin America there is a large market for medical doctors, students
and even marriages. Since this setting generalizes the model with a continuum
of workers and a finite number of firms presented in [3], extra conditions have to
be imposed in order to ensure the existence of stable matchings. They amount
to ask that the preferences of the firms satisfy a revealed preferences condition
and a certain type of “continuity”. These assumptions are close to the usual
ones in General Equilibrium Theory, hinting that methods used to study the
existence of equilibria in large economies with infinite dimensional commodity
spaces may be adapted to this matching problem. This is the approach taken
here. Of mathematical interest to our proof is the topological duality between
the space of signed Borel measures on a compact metric space and the space of
continuous functional on the compact metric space.

The plan of the paper is as follows. Section 2 presents the model, in partic-
ular describing its topological features. Section 3 adapts the concept of stable
matching to this context. Section 4 introduces the assumptions about the pref-
erences of the firm and states the main results of the paper, namely the existence
of stable matchings, which furthermore are Pareto optimal. In the Appendix
we present the proofs of these claims.
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2 The model

Let us consider an economy with a continuum of workers and with infinitely
(countable) many firms.1 A measurable space (Θ, σ (Θ)) represents a continuum
where each θ in Θ is a type of worker. Θ is assumed to be a compact metric
space and σ (Θ) is the Borel σ−algebra over Θ.

Let χ be the set of all non-negative measures over (Θ, σ (Θ)). Let G ∈ χ
be the particular Borel measure corresponding to the distribution of workers.
That is, given any E ∈ σ (Θ), G (E) is the measure of workers belonging to E.
For the sake of normalization we assume that G (Θ) = 1.

On the other side of the market we consider a set of firms F := {f1, f2, ..., fn−1,
fn, fn+1, ...}. Since there might be workers that remain without being matched

to any firm, we add the null firm ∅. Hence, we consider F̃ := F ∪ ∅.
Let X ∈ χ. By a slight abuse of language we call X a subpopulation of Θ if

X ≤ G.2 The set of all subpopulations of Θ is χ ⊂ χ. For a given X ∈ χ, X ′ ∈ χ
is said to be a subpopulation of X if X ′ ≤ X. The set of all subpopulations of
X is denoted χX .

Given X,Y ∈ χ we can define X ∨Y and X ∧Y in terms of the partial order
≤. More precisely, X ∨ Y is their supremum, i.e. the smallest measure of which
both X and Y are subpopulations. In turn, X ∧ Y , the infimum, is the largest
measure in χX ∩ χY . These operations can in turn be defined for any pair of
subsets of subpopulations of Θ. The next lemma indicates that suprema and
infima exists for all pairs of subsets of χ.

Lemma 1 The partially ordered set (χ,≤) is a complete lattice

Proof. See [3].

Let us denote the space of all finite and signed measures of bounded variation
on (Θ, σ(Θ)) by M. The norm on M is the total variation norm, that is,
for N ∈ M, ‖N‖ = sup

∑n

i=1
|N(Si)|, where the supremum is taken over all

finite sequences (Si) which are a partition of σ(Θ) ([5], Definition 4, pg. 97).
Furthermore, this space is isometrically isomorphic to the topological dual of
C(Θ), the space of continuous functions over Θ ([5], Theorem 3, p. 265). So,
we endow this space with the weak∗-topology σ(M, C(Θ)). Since χ is a weak∗-
closed subset of M, we can endow it with the relative topology.

We now describe the preferences of both workers and firms. For the former
case we consider the set of possible preferences denoted by P. We assume that
each worker has a strict preference over F̃ represented by a bijection P ∈ P,
P : {1, 2, ...} 7→ F̃ , yielding a linear ordering of F̃ . P (j) will denote the identity
of the worker´s j-th best alternative for j = 1, 2, ...

We shall denote the strict preference of f to f ′ according to P ∈ P by
f ≻P f ′. For each P ∈ P, we denote the set of all workers whose preferences
are given by P as ΘP ⊂ Θ. We shall assume that ΘP belongs to σ (Θ) for every

1Our notation follows closely that in [3].
2i.e. X (S) ≤ G (S) for all S ∈ σ (Θ)

4



P ∈ P and that the boundary of ΘP has a null measure, that is, G (∂ΘP ) = 0.3

Since all worker types have strict preferences, ΘP ′ ∩ ΘP = ∅ for all P, P ′ ∈ P
and P 6= P ′. Thus Θ = ∪

P∈P
ΘP

With respect to the preference of a given firm, we shall describe it indirectly
by a correspondence Cf : χ −→ χ such that Cf (X) ⊂ χX is the set of subpop-
ulations of X ∈ χ that are the most preferred by f among all subpopulations
of X. For completeness, we let C∅(X) = {X} for all X ∈ χ. This definition
encompasses both the cases in which the firm is indifferent between alternatives
and those in which choices are unique.

The resulting matching model is thus fully described by (G, F̃ , (ΘP )P∈P , (Cf )f∈F̃
).

We note that the product space χ|F̃ | is a subset of the topological space M|F̃ |.

We endow this space with the sup-norm inherited from M|F̃ |, i.e., for every

N = (Nf )f∈F̃
∈ χ|F̃ |, ‖N‖ = sup

f∈F̃

{‖Nf‖ : Nf ∈ χ} . Since M = C(Θ)∗, we have

that σ(C(Θ),M)|F̃ | = σ(C(Θ)|F̃ |,M|F̃ |) ([22], Theorem 4.3, 1. p. 137).

3 Stable matchings

Without loss of generality we conceive a matching as a collection of measures

M = (Mf )f∈F̃
belonging to χ|F̃ | such that

∑
f∈F̃

Mf = G.
Matchings can be ordered according to the criterion first introduced by Blair

[2]. That is, given two matchings M and M ′ and f ∈ F̃ we say that Mf � M ′
f ,

i.e., Mf is preferred toM ′
f , ifMf ∈ Cf

(
Mf ∨M ′

f

)
. In turnMf ≻ M ′

f ( i.e., Mf

is strictly preferred to M ′
f ) if Mf ∈ Cf

(
Mf ∨M ′

f

)
and M ′

f 6∈ Cf

(
Mf ∨M ′

f

)
.

Let F ′ ⊂ F̃ , we shall say that M ′ �F ′ M (M ′ ≻F ′ M) if M ′
f � Mf (M ′

f ≻ Mf )
for all f ∈ F ′. Let us introduce the following two measures.

D�f (M) :=
∑

P∈P

∑

f ′∈F̃,f ′�P f

Mf ′ (ΘP ∩ ·)

and
D�f (M) :=

∑

P∈P

∑

f ′∈F̃,f ′�P f

Mf ′ (ΘP ∩ ·)

The measure Mf ′(ΘP ∩ ·) takes the value Mf ′(ΘP ∩ S) for every S ∈ σ(Θ).
We point out that these measures are well defined since everyMf is σ−finite and∑

f∈F̃
Mf is positive and upper bounded by G. D�f (M) denotes the measure

of workers that are assigned to firm f or better according to their preferences.
On the other side, D�f (M) weights the set of workers who are available for
being rematched to firm f (or better) since it measures those assigned to firm

3As pointed out in [3] it is a technical assumption that makes simpler the analysis. Never-
theless it is satisfied when it is assumed that almost all agents have strict preferences which
is a standard assumption in the literature or when the set Θ is discrete
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f or worse according to their preferences. We shall say that M �Θ M ′ if
D�f (M) ≥ D�f (M ′) for all f ∈ F̃ . We can thus say that the overall welfare
of the workers is higher in M than in M ′ if for every firm f , the measure of
workers assigned to f or better is larger in M than in M ′

With these elements in hand we can define what a stable matching is:

Definition 2 A matching M = (Mf )f∈F̃
is stable if

1. (a) For all P ∈ P and all f ∈ F̃ if ∅ ≻P f then Mf (ΘP ) = 0.

(b) For every f ∈ F̃ , Mf ∈ Cf (Mf ).

2. There is no f ∈ F and M ′
f ∈ χ such that M ′

f ≤ D�f (M) and M ′
f ≻ Mf

Here 1 is the so-called individual rationality condition while 2 is the no
blocking coalition condition. They are known to be satisfied in models with one
infinite side of the market ([3]). For our setting we add an additional definition:

Definition 3 A matching M is Pareto efficient if there is no matching M ′ 6= M
and F ⊂ F̃ such that M ′ �F M and M ′ �Θ M . It is weakly Pareto efficient if
there is no matching M ′ 6= M and F ⊂ F̃ such that M ′ ≻F M and M ′ ≻Θ M

Pareto efficiency means that there is no alternative matching in which the
overall welfare of the workers is higher and the firms are at least so well as in
M . Weak Pareto efficiency adds that there are no subset of firms and workers
which are strictly better in M ′.

4 Main results

Before stating the main theorem of this paper let us add two important assump-
tions on the preferences of the firms. Namely, for every f ∈ F̃

1. Cf is a nonempty and a convex-valued correspondence and satisfies the
revealed preference property: for any X,X ′ ∈ χ with X ′ ≤ X, if Cf (X)∩
χX′ 6= ∅, then Cf (X

′) = Cf (X) ∩ χX′ .

2. Cf is weak∗-closed, that is, for any sequence (Xn, Y n) converging to
(X,Y ) in the product of weak∗ topologies, such that Y n ∈ Cf (X

n) for
every n, then Y ∈ Cf (X).

Under these assumptions we have:

Theorem 4 (G, F̃ , (ΘP )P∈P , (Cf )f∈F̃
) has stable matchings.

and

Proposition 5 If a matching is stable then it is weakly Pareto efficient. If
|Cf (X)| = 1 for each f ∈ F̃ , then it is Pareto efficient.
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Both results are proven in Appendix. We point out that the above assump-
tions are also used in [3]. The revealed preference property is well known in the
matching literature. We refer to [13] among others. Regarding the continuity
of the choice function it is a technical assumption which means that Cf has
a closed graph. It is worth noticing that this is a very standard condition in
many fields of economic theory as, for instance, general equilibrium theory with
infinitely many commodities.

5 Discussion

In this paper we extended the many-to-one matching model to cover a market
with both infinite workers and firms, although the cardinalities of the two sides
are different (uncountable the former, countable the latter). We have shown
that stable matchings exist and, furthermore, they are Pareto optimal. This is
quite similar to the case of large economies in general equilibrium models.

Unsurprisingly, the methods applied to prove our main claims stem from
the literature on infinite dimensional economies, in particular profiting from
topological dualities. In our case, the duality betweenM and C(Θ). Beyond this
technical point, our assumptions over the preferences of the firms, namely that
each Cf satisfies two conditions akin to continuity and the revealed preferences
property lead quite naturally to the existence of stable matchings.

Further work involves extending the model to the case with uncountably in-
finite workers and firms in a non-seller/buyer settings. One possibility amounts
to conceive the case presented here as involving not a countable number of firms
but of types of firms of which there exists an uncountable infinite number.

A further, more complicated, extension is to the many-to-many case, which
might require different topological conditions, leading to a more symmetrical
treatment of the sets of workers and firms.
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6 Appendix

6.1 Proof of Theorem 4

We now turn to the proof of the theorem. The strategy is to construct a sequence
of large economies with finitely many firms such that in every case there is a
stable matching. Then, by a limit argument we obtain a stable matching for the
original economy. In doing so, we structure the proof in three parts: First we
define a sequence of truncated versions of the original economy. Second we show
that each of them has a stable matching and third we study the limit point of
the ensuing sequence of stable matchings and show it to be a stable matching
of the original economy.

First part: Specification of a sequence of economies with finitely many firms.
For every natural number n, we define the set Fn := {f1, f2, ..., fn} and

F̃n := Fn ∪ {∅}. It is clear that F̃n ⊂ F̃n+1 ⊂ F̃n+2 ⊂ ..., F̃ =
⋃∞

n=1
F̃n and

|F̃n| = n+1. The correspondence Cf : χ −→ χ is that of Section 2 for f ∈ F̃n.
The preference of the workers are given by the restricted preference P|F̃n :

{1, ..., n + 1} 7→ F̃n. That is to say P|F̃n and P order the firms in F̃n in the
same way.

For every f ∈ F̃n the measures Dn,�f (M) and Dn,�f (M) are defined as

Dn,�f (M) :=
∑

P∈P

∑

f ′∈F̃n,f ′�P f

Mf ′(ΘP ∩ ·)

and
Dn,�f (M) :=

∑

P∈P

∑

f ′∈F̃n,f ′�P f

Mf ′(ΘP ∩ ·)

.
Hence, the truncated large economy is specified by (G, F̃n, (ΘP )P∈P , (Cf )f∈F̃n)

and we obtain a sequence of large economies with finite sets of firms directed
by inclusion {G, F̃n, (ΘP )P∈P , (Cf )f∈F̃n}n≥1.
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Second part: Each of the terms of the sequence has a stable matching.
It is easy to check that Assumptions 1 and 2 hold in every economy (G, F̃n, (ΘP )P∈P , (Cf )f∈F̃n).

Consequently, by Theorem 2 of [3], there exists a stable matching Mn =(
Mn

f

)

f∈F̃n
∈ χn+1 in every (G, F̃n, (ΘP )P∈P , (Cf )f∈F̃n)

4. We expand it to

the product space χ|F̃ | while still writing it as Mn =
(
Mn

f

)

f∈F̃
.5 Let us recall

that χ|F̃ | is a subset of the topological dual of C(Θ)|F̃ | given by M|F̃ |.

Let us consider the set
{
(Nf )f∈F̃

∈ M|F̃ | :
∑

f∈F̃
Tf = G

}
. It can be easily

checked that it is norm-bounded and by Alaoglu’s Theorem ([21]) it is weak∗-
compact. Since Mn belongs to BM for every n, there exists a subsequence
(Mnk)k∈K , where K is a subset of the natural numbers, converging to M in
the weak∗-topology. Since a sequence in a product space converges if and only
if the projection of each component converges ([16], p. 91), we have a limit
M = (Mf )f∈F̃

.
Third part: M is a stable matching.
Since for every k ∈ K,

∑
f∈F̃

Mnk

f = G and χ is weak∗-closed, we have that∑
f∈F̃

Mf = G, hence M is a matching. We now show that it is stable:

(i) Let f ∈ F̃ and P ∈ P such that ∅ ≻P f . There exists n0 such that

f ∈ F̃n0 . There exists k0 ∈ K such that for all k ≥ k0, F̃
n0 ⊂ F̃nk . Since

Mnk =
(
Mnk

f

)

f∈F̃
is a stable matching we have that Mnk

f (ΘP ) = 0 for

all k ≥ k0. Hence, Mf (ΘP ) = 0.

(ii) Let f ∈ F̃ . There exists n0 such that f ∈ F̃n0 . There exists k0 ∈ K

such that for all k ≥ k0, F̃
n0 ⊂ F̃nk . Since Mnk =

(
Mnk

f

)

f∈F̃
is a stable

matching we have that Mnk

f ∈ Cf

(
Mnk

f

)
for all k ∈ K. By Assumption

2., Mf ∈ Cf (Mf ).

We have proven that the matching M satisfies individual rationality. It
only remains to show that there is no blocking coalition. We proceed by con-
tradiction. Suppose that there exists f ∈ F and M ′

f ∈ χ such that M ′
f ≤

D�f (M), M ′
f ∈ Cf

(
Mf ∨M ′

f

)
and Mf /∈ Cf

(
Mf ∨M ′

f

)
. It is clear that

Mf ≤ Mf ∨ M ′
f , whence Mf ∈ χMf∨M ′

f
. By (ii) above, Mf ∈ Cf (Mf ) and

hence, Mf ∈ Cf (Mf ) ∩ χMf∨M ′

f
. Consequently, by the revealed preference

condition, Mf ∈ Cf

(
Mf ∨M ′

f

)
, a contradiction.

4We remark that Theorem 2 in [3] is proved under the assumption that P is finite. Nev-
ertheless, the proof they provide also works for the infinite case.

5i.e. we add the null measure On
f

to the product spaces in the following way: Mn =
(

Mn
f

)

f∈F̃n
×

(

On
f

)

f∈F̃\F̃n
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6.2 Proof of Proposition 5

First of all, we claim that6

∑

P∈P

∑

f ′∈F̃ ,f ′�P f̄

M ′
f ′(ΘP ∩ S) ≥

∑

P∈P

∑

f ′∈F̃ ,f ′�P f̄

Mf ′(ΘP ∩ S) (1)

for all S ∈ σ(Θ) and all f̄ ∈ F̃ is equivalent to saying that

∑

f ′∈F̃ ,f ′�P f̄

M ′
f ′(ΘP ∩ S) ≥

∑

f ′∈F̃ ,f ′�P f̄

Mf ′(ΘP ∩ S) (2)

for all S ∈ σ(Θ), for all f̄ ∈ F̃ and all P ∈ P. Indeed, for S ∈ σ(Θ), one has that
S ∩ΘP belongs to σ(Θ) since ΘP is assumed measurable. Then, since S ∩ΘP

does not meet ΘP ′ for P ′ 6= P it follows that (1) implies (2). The converse is
immediate.

We proceed by contradiction. Let us suppose that there exists M ′ such
that M ′ ≻F M and M ′ ≻Θ M . Consequently there exists f ∈ F such that
M ′

f ≻ Mf . For a given preference P ∈ P we denote the immediate predecessor

of f as fP
− .7. Since M ′ ≻Θ M then, for each f̄ ∈ F̃ , one has

∑

f ′∈F̃ ,f ′�P f̄

M ′
f ′(ΘP ∩ S) ≥

∑

f ′∈F̃ ,f ′�P f̄

Mf ′(ΘP ∩ S)

for all S ∈ σ(Θ) and P ∈ P. In particular for fP
−

∑

f ′∈F̃ ,f ′�P fP
−

M ′
f ′(ΘP ∩ S) ≥

∑

f ′∈F̃ ,f ′�P fP
−

Mf ′(ΘP ∩ S)

for all S ∈ σ(Θ)
Which is equivalent to

∑

f ′∈F̃ ,f ′≻P f

M ′
f ′(ΘP ∩ S) ≥

∑

f ′∈F̃ ,f ′≻P f

Mf ′(ΘP ∩ S) (3)

for all S ∈ σ(Θ)

Given P ∈ P we have
∑

f∈F̃

M ′
f (ΘP ∩ S) = G(ΘP ∩ S) =

∑

f∈F̃

Mf (ΘP ∩ S) for all S ∈ σ(Θ)

which can be rewritten as
∑

f ′∈F̃ ,f ′≻f

M ′
f ′(ΘP∩S)+

∑

f∈F̃ ,f ′�f

M ′
f ′(ΘP∩S) =

∑

f ′∈F̃ ,f ′≻f

Mf ′(ΘP∩S)+
∑

f ′∈F̃ ,f ′�f

Mf ′(ΘP∩S)

6We thank a clarification of Fuhito Kojima which simplified our proof
7It means that fP

− ≻ f and if f ′ ≻ f then f ′ � fP
−
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for all S ∈ σ(Θ).

We claim that
∑

f∈F̃ ,f ′�f

M ′
f ′(ΘP ∩ S) ≤

∑

f ′∈F̃ ,f ′�f

Mf ′(ΘP ∩ S) for all S ∈

σ(Θ). Otherwise, from the previous equality one deduces that
∑

f ′∈F̃ ,f ′≻f

M ′
f ′(ΘP∩

S) <
∑

f ′∈F̃ ,f ′≻f

Mf ′(ΘP ∩S) for some S ∈ σ(Θ) which contradicts (3). Summing

over P, ∑

P∈P

∑

f∈F̃ ,f ′�f

M ′
f ′(ΘP ∩ S) ≤

∑

P∈P

∑

f ′∈F̃ ,f ′�f

Mf ′(ΘP ∩ S)

for all S ∈ σ(Θ)

Since M ′
f ≻ Mf and M ′

f ≤ D�f (M ′) we have a contradiction with the fact
that M is a stable matching. Consequently, M is weakly Pareto efficient.

Now, if |Cf (X)| = 1 for all X ∈ χ and we assume that M is not Pareto

efficient, then there is another matching M ′ and F ⊂ F̃ such that M ′ 6= M ,
M ′ �F M andM ′ �Θ M . Consequently, there exists f ∈ F such thatM ′

f � Mf

which means that M ′
f = Cf (M

′
f ∨ Mf ). Then Mf 6= M ′

f , whence M ′
f ≻ Mf

which contradicts the fact that M is a stable matching.
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