CAPÍTULO VII

ESTUDIO DE LAS INCLUSIONES FLUIDAS

1. INTRODUCCIÓN

En este capítulo se brindan los resultados del estudio de las inclusiones fluidas presentes en las principales venillas mineralizadas del pórfido de Cu-(Au-Mo) que cortan al pórfido 4. El estudio de las inclusiones fluidas incluyó técnicas petrográficas apoyadas por imágenes de cátodo luminescencia, el análisis microtermométrico y espectrometría Ramman para determinar las temperaturas y salinidades de los fluidos hidrotermales que precipitaron los minerales y también inferir las presiones de entrampamiento.

El objetivo de estos estudios es conocer las características de los fluidos hidrotermales que originaron el depósito de tipo pórfido y los cambios químicos y físicos que ocurrieron durante su evolución. Finalmente se intenta correlacionar las características y evolución de los fluidos con la introducción y precipitación de los metales.

2. METODOLOGÍA

Se realizaron mediciones microtermométricas en inclusiones fluidas correspondientes a las venillas de los tres pulsos mineralizadores principales del pórfido 4. Se seleccionó este intrusivo, localizado en el filo central, por ser el que presenta las leyes más altas de Cu del proyecto.

El método de cátodo luminescencia permitió identificar diferentes generaciones de cuarzo en una misma venilla y asociar cada grupo de inclusiones fluidas presentes a una generación de cuarzo determinada. Las texturas del cuarzo de las venillas observadas por cátodo luminescencia se identifican con las siguientes letras: A) cuarzo con zonación de crecimiento euhedral, B) pequeñas zonas de baja luminescencia de cuarzo unidas por redes irregulares (textura en "tela de araña"; Rusk y Reed, 2002), C) banda de baja luminescencia que atraviesa cuarzo previo, D) cuarzo de baja luminescencia entre fragmentos de cuarzo más brillante, E) cuarzo de baja luminescencia en los bordes de granos de cuarzo de mayor brillo y F) cuarzo CL oscuro alrededor de núcleos de cuarzo CL brillante.

La petrografía de las inclusiones fluidas y subsecuentes determinaciones se efectuaron exclusivamente en asociaciones de inclusiones fluidas (Goldstein y Reynolds, 1994) (AIF, grupos o alineaciones de IF cercanas que muestran similares porcentajes de fases y formas). El análisis petrográfico de detalle de las muestras que presentaban más de una AIF, por otra parte, permitió determinar la relación temporal de los distintos eventos. Se efectuaron los estudios microtermométricos de las AIF seleccionadas para cuantificar las temperaturas y las composiciones de los fluidos y estimar las presiones. Las mediciones fueron realizadas en secciones doblemente pulidas (30-100 µm de espesor).

Los estudios termométricos de las inclusiones fluidas se realizaron en el Departamento de Geología de la Universidad Nacional del Sur, en Bahía Blanca, con una platina Linkam computarizada que permite operar en el rango de -180° a +600 °C por una combinación de un sistema de enfriamiento por nitrógeno líquido y una resistencia para calentamiento, instalada en un microscopio petrográfico Olympus BX50 con oculares x10 y x25 y objetivo Leitz UTK50/0.63. La platina fue calibrada con sustancias estándares puras, con punto de fusión conocido, desde +400°C hasta el punto de fusión del hielo, a 0°C. Otros análisis de inclusiones fluidas se realizaron en el Laboratorio de Inclusiones Fluidas del Centro de Desenvolvimiento de Tecnología Nuclear (CDTN), en Belo Horizonte, Brasil, con la platina FTIR600-Linkam, con los controladores automáticos LNP 94/2 e TMS 94 y utilizando el software Linksys 32.

Los componentes volátiles de las inclusiones fluidas de las venillas fueron analizados con un microespectroscopio Raman en los laboratorios del Centro de Desenvolvimiento de Tecnología Nuclear (CDTN), en Belo Horizonte, Brasil.

Para clasificar las inclusiones fluidas se siguieron los criterios genéticos de Roedder (1984) (Primarias-P, Seudo-secundarias-SS y Secundarias-S) y los de Nash (1976), basados en la composición de la IF a temperatura ambiente.

De acuerdo con la composición de las inclusiones fluidas estudiadas (Nash, 1976), se identificaron 5 tipos y para facilitar sus descripciones se han denominado de la siguiente manera:

- I- bifásicas acuosas ricas en líquido
- II- bifásicas acuosas ricas en vapor
- III- trifásicas
- IV- multifásicas
- V- monofásicas de vapor

El CO₂ está en bajas concentraciones y resulta difícil su reconocimiento petrográfico, por lo cual no fue considerado en la clasificación previa.

Las inclusiones han sido clasificadas en subtipos según los criterios petrográficos, tales como el tamaño de la burbuja, el contenido de las fases sólidas y las relaciones entre las distintas asociaciones de inclusiones fluidas. Para denominar a los subtipos de inclusiones se utilizó la terminología introducida por Rusk et al. (2008) que refleja el volumen de la inclusión rellenada con vapor ("B" burbuja) a temperatura ambiente; esto significa que una inclusión denominada "B₃₀" contiene un 30% en volumen de vapor cuando es observada a temperatura ambiente. En las inclusiones fluidas saturadas, la identificación de los distintos sólidos se realizó utilizando el criterio de Shepherd et al. (1985).

Una estimación preliminar de las proporciones de los distintos tipos de inclusiones fluidas en cada muestra estudiada se realizó mediante una cámara clara, en cinco sectores de la venilla escogidas al azar, a partir de la descripción y el dibujo de un total de 200 inclusiones fluidas. La proporción de cada tipo de inclusión en la muestra se graficó en un diagrama circular.

Los cambios de fases a bajas temperaturas se midieron en primer lugar para minimizar la posibilidad de decrepitación de IF. Todas las muestras fueron inicialmente enfriadas a -120°C, luego lentamente calentadas para medir las temperaturas de la primer fusión (T_e) y de fusión final del hielo (T_m) (Roedder, 1984; Shepherd et al., 1985) y con ellas poder determinar el sistema salino al cual pertenece el fluido (por ejemplo NaCl-H₂O o NaCl-CaCl₂-H₂O) y su salinidad utilizando el programa FLINCOR (ecuación de Brown y Lamb, 1986, 1987, 1989). Se continuó con el calentamiento para determinar las temperaturas de homogeneización líquido-vapor (T_h) y de fusión de los minerales hijos (T_m).

La salinidad, el contenido de CO₂ y la densidad de las inclusiones que forman clatratos en el enfriamiento se calcularon utilizando el programa FLINCOR (fórmula de Brown y Lamb, 1986, 1987, 1989). Para las inclusiones con halita, la salinidad se determinó a partir de la temperatura de disolución de la halita, según la ecuación de Bodnar y Vityk (1994). Para las inclusiones que homogeneizaron por disolución de la halita este método subestima la salinidad hasta 3% en peso de NaCl equivalente. Las salinidades de las inclusiones que contenían halita y silvita fueron determinadas por las temperaturas de disolución de la halita y de la silvita usando el diagrama de fases triangular NaCl-KCl-H₂O (Roedder, 1984).

La información fue integrada y representada en histogramas de frecuencias y diagramas de salinidades versus temperaturas de homogeneización que facilitaron la interpretación de la evolución espacial y temporal de los fluidos hidrotermales. El análisis de estos diagramas permitió determinar los procesos físico-químicos que intervinieron en la evolución del sistema hidrotermal y analizar las condiciones que favorecieron la precipitación de la mineralización.

Los datos microtermométricos de las asociaciones de inclusiones fluidas en ebullición se compararon con las superficies de estabilidad de dos fases (*"solvus"*) del sistema NaCl-H₂O (isobaras de Driesner y Heinrich, 2007) para determinar las presiones de entrampamiento absolutas y estimar la profundidad de entrampamiento (Shepherd, 1985). Para los fluidos que no están en ebullición, permite inferir una profundidad mínima de entrampamiento. La fórmula general que relaciona presión con la profundidad es la siguiente: $P = H. \rho. g, donde P es la presión, \rho es la densidad del material sobreyacente (1 g/cm³ en$ condiciones hidrostáticas; 2,7 g/cm³ en condiciones litostáticas), g es la aceleración de la gravedad. Una simplificación de esta fórmula para obtener las profundidad (H) en metros y la presión (P) en bares es la siguiente: P = H. (2,7 o 1). 0,0981 (Shepherd, 1985) donde 0,0981 representa la aceleración de la gravedad y se utiliza el factor 2,7 o 1 como densidad del medio bajo condiciones litostática o hidrostática respectivamente.

3. RESULTADOS

3.1. Petrografía y microtermometría de las inclusiones fluidas

Un resumen de los tipos y subtipos de inclusiones fluidas reconocidos en las venillas estudiadas (tipos 2a, 3, 5d y 6a) se presentan en la Tabla 1 y el detalle de todas las mediciones realizadas se muestra en los Apéndices 1-10.

3.1.1 Venillas tipo 2a

En primer lugar, se examinaron las venillas tempranas tipo 2a (cuarzo \pm anhidrita \pm feldespato potásico, calcopirita \pm pirita \pm bornita) equilibradas con la alteración potásica. Estas venillas, junto a las venillas 2b y la calcopirita y pirita diseminadas de este estadio, representan el primer pulso de mineralización de Cu-Au.

En las venillas 2a, el cuarzo ocupa el 90% de la venilla y está en individuos anhedrales con bordes crenulados (0,1-0,8 mm). En las imágenes obtenidas por catodoluminescencia, los núcleos de los granos de cuarzo anhedrales de las venillas 2a $(Cz-1_{(2a)})$ tienen luminescencia moderada a baja y exhiben una zonación de crecimiento euhedral (textura "A") (Figs. 1A). El cuarzo más joven de baja luminiscencia, sin zonación y de tonalidad rojiza $(Cz-2_{(2b)})$, sólo visible con microscopía CL, es el que está en contacto con la mineralización de calcopirita, pirita y bornita y forma las microvenillas 2b irregulares que cortan al cuarzo Cz-1 (Fig. 1A).

El cuarzo joven también se encuentra en redes con textura en "tela de araña" (textura "B" en fotografía, Rusk y Reed, 2002) (Fig. 1A) que reflejan un proceso de corrosión del cuarzo previo (Rusk y Reed, 2002). Además, interrumpe las zonas de crecimiento del cuarzo $Cz-1_{(2a)}$ y muestra contactos irregulares y difusos sobre el cuarzo $Cz-1_{(2a)}$ (Fig. 1A). Estas texturas permitieron determinar que los sulfuros en estas venillas están asociados al cuarzo $Cz-2_{(2b)}$ de las venillas tipo 2b, que precipitó en los huecos dejados por la disolución del cuarzo ($Cz-1_{(2a)}$) de la venilla 2a (ver capítulo V).

En los granos de cuarzo de las venillas tipo 2a, se pudieron distinguir abundantes asociaciones de inclusiones fluidas (AIF) primarias y seudo-secundarias (15 a 60 μ m) de forma regular a ovoide. Entre las primarias y las seudo-secundarias hay inclusiones fluidas bifásicas ricas en líquido (Tipo I), inclusiones bifásicas ricas en vapor (Tipo II), inclusiones

trifásicas (Tipo III) e inclusiones multifásicas (Tipo IV) (Fig. 1B). Las inclusiones tipo II y tipo IV suelen formar parte de una misma asociación de inclusiones fluidas.

Entre las IF primarias y pseudo-secundarias del cuarzo de esta venilla predominan las de tipo III y IV (Fig. 1C), en cada tipo de inclusión se han encontrado subtipos que se describen con detalle en los párrafos siguientes. En cantidad subordinada con respecto a las primarias y pseudo-secundarias, se reconocieron inclusiones secundarias de tipo I, de forma ovoide alargada (<10µm).

Las inclusiones fluidas primarias tipo I (subtipo $B_{20(2a)}$) de estas venillas tienen burbujas de vapor que ocupan el 20 % del volumen de la inclusión. Se midieron Te variables de -63, -60, -54 y -48 °C, correspondientes a sistemas de fluidos químicamente complejos comparables a algunos de los descriptos por Borisenko (1977):

-H₂O-NaCl-CaCl₂, eutéctico teórico:-55 (-52 °C)

-H₂O-MgCl₂-CaCl₂, eutéctico teórico: -52,2 °C

-H2O-CaCl2, eutéctico teórico: -49,8 °C

Los valores de fusión cercanos a -56,6 °C indican contenidos de CO₂ en el fluido, cuya presencia se comprobó con microespectroscopía Raman (Tabla 2).

Las temperaturas de homogeneización de la fase CO_2 a líquido observadas estuvieron comprendidas entre 22 y 26 °C y las temperaturas de fusión del clatrato entre 6 y 8,2 °C. Estas inclusiones homogeneizaron a fase a líquida a temperaturas comprendidas entre los 425 y 540 °C. Utilizando los valores de las temperaturas de homogeneización del CO_2 y de la fusión del clatrato se determinaron salinidades en el rango de 3,5 a 7,3 % en peso de NaCl equivalente y densidad del CO_2 de ~0, 19 (Tabla 1, Apéndice 1).

Algunas de las inclusiones primarias tipo II (Subtipo $B_{80-90 (2a)}$) presentan burbujas que ocupan entre el 80 y 90% del volumen de la inclusión y en ellas se identificó CO₂ con el microespectroscopio Raman (Tabla 2). Estas inclusiones homogeneizaron a CO₂ líquido a temperaturas comprendidas entre los 20 y 26°C, con temperaturas de fusión del clatrato entre los 6 y 8°C. La homogeneización final se produce a fase vapor entre 420 a 480 °C. Este intervalo de temperaturas indica salinidades del orden de 3,5 a 7,3 % en peso de NaCl equivalente (Tabla 1, Fig. 1D, Apéndice 2).

Otro grupo de inclusiones tipo II, con burbujas que ocupan entre el 50 y el 70% de la inclusión (Subtipo $B_{50-70 (2a)}$), no alcanzaron la homogeneización aún a los 550 °C. En estas

Figura 1. Inclusiones fluidas de las venillas tipo 2a. A) Imagen CL de cuarzo Cz-1_(2a) de una venilla 2a cortado por cuarzo Cz-2_(2b) con calcopirita de venilla 2b. texturas indicadas en las imágenes: "A" de zonación composicional y "B" textura de "tela de araña". B) asociación de inclusiones fluidas tipo II y tipo IV en un núcleo del cuarzo. C) Proporción de los

distintos tipos de inclusiones fluidas en las venillas 2a obtenida mediante técnica estadística. Además se señalan los subtipos de inclusiones fluidas estudiados. D) Ejemplos de inclusiones fluidas tipo II y tipo IV con cristales de halita y hematita. E) Histograma de temperaturas de homogeneización para los distintos tipos de inclusiones de las venillas 2a. Se destacan con una flecha los subtipos de inclusiones que no alcanzaron la homogeneización aún a los 550° C y el grupo de inclusiones fluidas secundarias (S). F) Histograma de salinidades expresadas en % en peso de NaCl equivalente para los distintos tipos de inclusiones de las venillas 2a.

inclusiones a partir de la temperatura de homogeneización del CO₂ a fase líquida (22-24 °C) y la temperatura de fusión del clatrato (6,5-8 °C) se pudieron determinar la densidad de la fase CO₂ y la salinidad del sistema H₂O-CO₂ en el rango de 3,9 a 6,54 % en peso de NaCl equivalente y densidad de CO₂ entre 0,25 y 0,74 (Tabla 1, Apéndice 2).

Entre las inclusiones trifásicas, se determinaron tres subtipos: 1) el subtipo $B_{10-30}H_{(2a)}$ con una burbuja de vapor que ocupa entre el 10 y el 30% de la inclusión y un cristal de halita; 2) el subtipo B_{70-80} op (2a), con una burbuja de vapor que ocupa entre el 70 y el 80% de la inclusión y una fase sólida opaca no diferenciada y 3) el subtipo B_{60-70} op (2a) con burbujas que ocupan entre el 60 y el 70% de la inclusión y un opaco indiferenciado (Tabla 1). Las Te medidas en las inclusiones trifásicas del subtipo $B_{10-30}H$ fueron -44, -49, y -56°C, temperaturas eutécticas similares a los eutécticos de los siguientes sistemas acuosos salinos (Borisenko, 1977).

-H₂O-CaCl₂, eutéctico teórico: -49,8° C
-H₂O-CaCl₂-ClK, eutéctico teórico: - 50.5° C
-H₂O-MgCl₂-CaCl₂, eutéctico teórico: -52,2° C
-H₂O-NaCl-CaCl₂, eutéctico teórico:-55° C

No se descarta además la presencia de CO_2 (punto triple -56,6 ° C), si bien no pudieron observarse otros cambios de fase como el congelamiento de la fase sólida o la fusión del clatrato.

Algunas inclusiones del subtipo $B_{10-30}H_{(2a)}$ homogeneizaron a fase líquida entre los 339 y 405° C, y a partir de las temperaturas de disolución del cristal de halita se determinan salinidades entre los 30,5 y 36 % en peso de NaCl equivalente (Tabla 1, Apéndice 3). Sin embargo, la mayoría de las inclusiones de este subtipo homogeneizaron por disolución del cristal de halita a temperaturas comprendidas entre 289 y 469° C (Tabla 1, Apéndice 3). Estas últimas indican salinidades de 31,9 a 55,8 % en peso de NaCl equivalente (Tabla 1, Apéndice 3) y su significado se analiza en la discusión.

Las inclusiones primarias trifásicas del subtipo B_{70-80} op _(2a) homogeneizaron a fase vapor en el rango de temperaturas de 390 a 450° C y las inclusiones del subtipo B_{60-70} op _(2a) no homogeneizaron aún a 550° C (Tabla 1, Apéndice 3).

En las inclusiones tipo IV, el porcentaje de la burbuja de vapor es de 5 a 40% ($B_{5-40}sn_{(2a)}$). Los sólidos más frecuentes identificados son halita \pm hematita \pm calcopirita \pm anhidrita \pm silvita \pm anhidrita (Fig. 1D). Las fases sólidas ocupan entre el 5 y el 40% de la inclusión. Se midieron Te variables tales como -63, -59, -57, -56 °C, similares a aquellas de sistemas de fluidos químicamente complejos (Borisenko, 1977).

-H₂O-NaCl-CaCl₂, eutéctico teórico:-55 (-52 °C)

Las temperaturas de fusión cercanas a -56,6 °C podrían indicar asimismo la presencia de CO₂.

Parte de estas inclusiones tipo IV homogeneizaron a fase líquida a temperaturas variables, entre los 242 y 540°C, la mayoría entre 350 y 390°C. A partir de sus temperaturas de disolución del cristal de halita y silvita se determinaron salinidades comprendidas entre 32 y 42,4 % en peso de NaCl equivalente (Tabla 1, Apéndice 4). Otras homogeneizaron por disolución del cristal de halita entre los 260 y 454°C. De acuerdo a estas temperaturas se determinaron salinidades de 36 a 70 % en peso de NaCl equivalente (Tabla 1, Apéndice 4) y su comportamiento se interpreta en la discusión.

Las inclusiones secundarias de tamaño muy pequeño ($<5\mu$ m) en estas venillas son de tipo I (con burbujas de vapor que ocupan el 10 % del volumen de la inclusión; subtipo B₁₀ (_{2a)}). Homogeneizaron a fase líquida entre los 250 y 300° C y de acuerdo con las temperaturas de fusión final del hielo (-0,4 a -2,3°C) sus salinidades varían entre 0,66 y 3,7% en peso de NaCl equivalente (Tabla. 1, Apéndice 1).

El las figuras 1E y 1F se presentan los histogramas de temperatura de homogeneización y las salinidades expresadas en % en peso de NaCl equivalente para los distintos tipos de inclusiones de las venillas 2a. Se destacan con una flecha los subtipos de inclusiones que no alcanzaron la homogeneización aún a los 550° C (Fig. 1F).

3.1.2. Venillas tipo 3

Las venillas tipo 3 se caracterizan por una mineralogía dominada por cuarzo con cantidades subordinadas de molibdenita \pm calcopirita \pm pirita, tienen las paredes rectas y están asociadas al pulso de mineralización de Mo.

En imágenes de catodoluminescencia se reconocieron tres distintas generaciones de cuarzo en las venillas 3. La primera generación de cuarzo (Cz-1₍₃₎), que constituye el 90% de la venilla, se presenta como granos subhedrales (0,2-1 mm) con luminescencia moderada y débil zonación de crecimiento euhedral. En el centro de la venilla, el Cz-1₍₃₎ está afectado por disolución y corrosión en microfracturas y estos espacios han sido rellenados por un cuarzo más joven (Cz-2₍₃₎), de color gris oscuro en las imágenes CL y que carece de zonación de crecimiento. Los cristales laminares (<0,4 mm) de molibdenita se agrupan en una o varias bandas paralelas cerca de los márgenes de las venillas, donde cortan a Cz-1₍₃₎. La última generación de cuarzo de color rojizo está en zonas irregulares en el contacto entre los granos de cuarzo y forma redes que cortan a los cuarzos previos. Parece estar en contacto con la molibdenita (ver Fig. 19 en capítulo V).

La anhidrita tardía del centro de la venilla contiene inclusiones primarias y secundarias bifásicas ricas en líquido, tipo I, que no fueron analizadas (Figs. 2D y E).

Los núcleos de los granos de cuarzo contienen abundantes inclusiones primarias y pseudo-secundarias de formas regular a irregular de tipos I (B_{20} (3)), II (B_{80-90} (3)), III (B_{20-40} s (3)) y IV (B_{20-30} sn (3)) (Fig. 2A), en tanto que el cuarzo en contacto con los sulfuros se caracteriza por ser límpido y contiene escasas inclusiones fluidas (Fig. 2B). En estas venillas predominan las inclusiones fluidas tipo I y tipo III (Fig. 2C), y las inclusiones tipo II, III y tipo IV suelen formar parte de una misma asociación. En las inclusiones analizadas con el microespectroscopio Raman, no se registraron picos de CO₂ o de H₂S (Tabla 2).

Las inclusiones tipo I (B_{20}) (3), con burbujas de vapor que ocupan el 20% de la inclusión, homogeneizaron a líquido entre los 220 y 264° C. Las temperaturas de fusión del hielo, entre -6,3 y -2,7°C indican salinidades en el rango de 4,3 a 9,5% en peso de NaCl equivalente (Tabla. 1, Apéndice 5). Se midieron Te variables: -48 y -62°C, correspondientes a sistemas de fluidos químicamente complejos (Borisenko, 1977) como:

-H₂O-CaCl₂, eutéctico teórico: -49.8 °C

-H₂O-NaCl-CaCl₂, eutéctico teórico:-55 °C

Las inclusiones fluidas tipo II (B_{80-90}) (3) tienen burbujas de vapor que ocupan el 80-90% de la inclusión y homogeneizaron a fase vapor entre los 380 y 450 °C. Las temperaturas de fusión final del hielo medidas (3,8 a 4° C) indican salinidades de ~6,3 % en peso de NaCl equivalente (Tabla. 1, Fig. 2F, Apéndice 5).

Las inclusiones fluidas tipo III, $B_{20-40}s_{(3)}$ tienen una burbuja de vapor que ocupa el 20 a 40% de la inclusión y presentan una fase sólida (halita, anhidrita). Estas inclusiones homogeneizaron a fase líquida a los ~380 °C (Tabla. 1, Apéndice 6). Las temperaturas

Figura 2. Inclusiones fluidas de las venillas tipo 3. A) Ejemplos de inclusiones fluidas tipo II y IV en núcleo de cuarzo Cz-1 de la venilla. B) Detalle de molibdenita en contacto con cuarzo límpido Cz-3 sin inclusiones fluidas. C) Proporción de los distintos tipos de inclusiones fluidos en las venillas 3. Se señalan los subtipos de inclusiones fluidas estudiados. D) Inclusión fluida primaria tipo I en anhidrita. E) Inclusiones fluidas secundarias tipo I en anhidrita. F) Inclusión fluida primaria tipo IIII en cuarzo. G) Inclusión fluida primaria tipo IV en cuarzo. H) Histograma de temperaturas de homogeneización y I) Histograma de salinidades expresadas en % en peso de NaCl equivalente obtenidas para los distintos tipos de inclusiones fluidas de las venillas 3.

-H2O-CaCl2, eutéctico teórico: -49,8 °C

-H₂O-NaCl-CaCl₂, eutéctico teórico:-55 °C

Asimismo, los valores de fusión cercanos a -56,6 °C podrían indicar la presencia de CO₂ sin embargo el mismo no fue identificado por microespectrometría Ramman (Tabla 2).

Las inclusiones tipo IV, B_{20-30} sn (3), se caracterizan por presentar más de una fase sólida. Los sólidos más frecuentes identificados son halita ± anhidrita ± hematita ± silvita ± calcopirita. Las temperaturas eutécticas reconocidas (-63, -50, -48°C) son similares a las de las inclusiones tipo III y sugieren el mismo tipo de sistema geoquímico. Homogeneizaron a temperaturas variables a fase líquida (243-473 °C) y por disolución del cristal de halita (370 a 380 °C). A partir de las temperaturas de disolución de la halita para el primer grupo se calcularon salinidades comprendidas entre 22 y 39% en peso de NaCl equivalente (Tabla. 1, Fig. 2G, Apéndice 6). Para las que homogeneizaron por disolución del cristal de halita se determinan salinidades de ~44 % en peso de NaCl equivalente (Tabla. 1, Apéndice 6).

El las figuras 2H y 2I se presentan los histogramas con las temperaturas de homogeneización (°C) y las salinidades en % en peso de NaCl equivalente para los distintos tipos de inclusiones de las venillas 3.

3.1.3. Venillas tipo 5b

Esta venilla sólo fue analizada por catodoluminescencia y no se hicieron mediciones microtermométricas. En las imágenes CL de la venilla 5b se reconocieron tres generaciones de cuarzo. La primera generación está constituida por bandas de cuarzo de baja luminiscencia y zonación de crecimiento que rodean a los sulfuros (pirita). Una segunda generación de cuarzo CL-negro corta al cuarzo previo. Una tercera generación de cuarzo de tonalidad rojiza corta a los cristales previos en bandas irregulares, con texturas de "tela de araña" y también está en contacto con los sulfuros (pirita) (ver Fig. 31 del capítulo V).

3.1.4. Venillas tipo 5c

Las venillas tipo 5c, que cortan a las venillas 5a y 5b, están rellenadas por la asociación mineral anhidrita \pm cuarzo \pm calcopirita \pm pirita (<1 cm de espesor). Los cristales de anhidrita (0,6-2 mm) representan el 95% de la venilla y están acompañadas por cristales de cuarzo (0,2-

0,4 mm) con sus longitudes mayores perpendiculares a las paredes de la venilla, junto a pirita y calcopirita subordinadas.

Figura 3. Inclusiones fluidas de las venillas tipo 5c. A) Inclusiones fluidas secundarias en anhidrita. B) Detalle de inclusiones secundarias tipo II en anhidrita. C) Inclusión primaria tipo I en anhidrita. D) Inclusión primaria tipo III en anhidrita. E) Histograma de temperaturas de homogeneización para los distintos tipos de inclusiones de las venillas 5c. Se señalan inclusiones fluidas analizadas en cuarzo y anhidrita. F) Histograma de salinidades expresadas en % en peso de NaCl equivalente obtenidas para los distintos tipos de inclusiones fluidas de las venillas 5c.

En el cuarzo de la venilla se analizaron inclusiones fluidas primarias tipo I, II y III. Las inclusiones primarias tipo I homogeneizaron a fase líquida entre los 330 y 400° C (Tabla 1, Apéndice 7). Las inclusiones fluidas primarias tipo II (B_{80-90} (5c)) tienen burbujas de vapor que ocupan el 80-90% de la cavidad y homogeneizaron a fase vapor a los 385-388° C. Las temperaturas de fusión final del hielo en estas inclusiones (~1,6° C) permitieron determinar salinidades de ~2,8 % en peso de NaCl equivalente (Tabla 1, Apéndice 8). Las inclusiones primarias tipo III (subtipos B_{10-20} s (5c)), con burbuja de vapor que ocupa el 10-20% en volumen de la cavidad y una fase sólida (halita, opaco indiferenciado; Fig. 3D), homogeneizaron a líquido a ~400° C. (Tabla 1, Apéndice 8). Sobre la base de las fases sólidas identificadas, estos fluidos se asignaron al sistema H₂O-NaCl. En el cuarzo también se

identificaron escasas inclusiones fluidas primarias tipo IV, con halita, anhidrita y opacos como fases sólidas, pero no fueron analizadas por microtermometría.

La anhidrita aloja escasas inclusiones fluidas primarias tipos I, II y III (10-20 μ m) y una mayor proporción de inclusiones fluidas secundarias alineadas tipo I (B_{20 (5c)}) y tipo II (B_{80 (5c)}) que atraviesan a los cristales (Figs. 3A y B). Las inclusiones secundarias son muy pequeñas para su descripción y análisis microtermométrico. Se analizaron las inclusiones fluidas primarias tipos I y III.

Entre las inclusiones primarias, predominan las de tipo I. Son de forma regular a rectangular y contienen una burbuja de vapor que ocupa entre el 10 y 20% de la cavidad (subtipo $B_{10-20 (5c)}$) (Fig. 3C). La mayor parte de las inclusiones fluidas tipo I homogeneizaron a fase líquida entre los 200 y 260° C. A partir de las temperaturas de fusión final del hielo (2-8 °C) se determinaron salinidades de 3,2 a 11,7% en peso de NaCl equivalente.

Las inclusiones primarias tipo III (subtipos $B_{10-20}s_{(5d)}$), con burbuja de vapor que ocupa el 10-20% en volumen de la cavidad y una fase sólida opaca indiferenciada; Fig. 3D), homogeneizaron a líquido a los 230° C. (Tabla 1, Apéndice 8).

El las figuras 3E y 3F se presentan los histogramas con las temperaturas de homogeneización (°C) y las salinidades estimadas como % en peso de NaCl equivalente para los distintos tipos de inclusiones de las venillas 5c.

3.1.5. Venilla tipo 6a

La muestra analizada corresponde a una venilla tipo 6a de tennantita (calcopirita) \pm pirita \pm cuarzo \pm oro de 3 cm de espesor, localizada en los niveles superficiales del sondeo A-53. Tennantita está acompañada de cuarzo subhedral, límpido, de grano grueso (<5% de la venilla), con inclusiones de oro (0,05 mm). El cuarzo exhibe contactos netos con tennantita (Fig. 4A). Sin embargo, en el examen al microscopio se identificaron dos generaciones de cuarzo: los núcleos cristalinos con abundantes inclusiones fluidas primarias y pseudo secundarias (Cz-1_(6a)) están rodeados por una segunda generación de cuarzo con menor cantidad de inclusiones (Cz-2_(6a)) (Fig. 4B). Las inclusiones analizadas se hospedan en el núcleo (Cz-1_(6a)) y han sido clasificadas como primarias (20µm), tipos I, II, III, IV y V (Fig. 4C). El cuarzo Cz-2_(6a) en contacto con tennantita aloja escasas inclusiones fluidas secundarias tipo II.

Entre las inclusiones primarias alojadas en el cuarzo temprano (Cz-1) de esta venilla, predominan las I y II (Fig. 4D). La asociación de inclusiones fluidas tipo I y tipo II con diferentes proporciones de líquido-vapor, de inclusiones monofásicas de vapor (tipo V) e

inclusiones tipo IV que homogeneizan a similares temperaturas sugiere la desmezcla de los fluidos.

Las inclusiones tipo I (B_{20} (6a)), con una burbuja de vapor que ocupa el 20% de la cavidad, homogeneizaron a fase líquida entre los 360 y 390°C. A partir de las temperaturas de fusión final del hielo (-10 a -6 °C) se determinaron salinidades comprendidas entre 9,1 y 13,9 % en peso de NaCl equivalente (Tabla 1, Apéndice 9).

Las inclusiones tipo II ($B_{80-90(6a)}$), con una burbuja de vapor que ocupa el 80-90% de la cavidad, homogeneizaron a fase vapor a temperaturas entre 380 y 440° C. Las temperaturas de fusión final del hielo (-2 °C) indican salinidades de los fluidos de ~3,2 % en peso de NaCl equivalente (Tabla 1, Apéndice 9). La temperatura eutéctica media (-63 °C) correspondería a un sistema salino complejo (Borisenko, 1977).

Las inclusiones tipo III presentan una burbuja de vapor (10-40% en volumen) (Figs. 4E, F y G) y una fase sólida (halita, hematita, opaco). Algunas inclusiones homogeneizaron a fase líquida entre los 280 y 368° C, pero la mayoría homogeneizaron por disolución del cristal de halita entre los 318 y 395° C. A partir de estas temperaturas se determinan salinidades de 39,8 a 46,4 % en peso de NaCl equivalente (Tabla 1, Apéndice 10). La temperatura eutéctica medida (-49° C) es similar a la del eutéctico $-H_2O-CaCl_2$ (-49.8 °C, Borisenko, 1977).

Todas las inclusiones tipo IV con múltiples fases sólidas (halita, silvita, anhidrita, fases minerales opacas y transparentes no identificadas), homogeneizaron por disolución del cristal de halita entre los 250 y 386° C. Estas temperaturas de disolución de la halita permitieron determinar salinidades comprendidas entre 34 y 45% en peso de NaCl equivalente (Tabla 1, Apéndice 10). Las temperaturas eutécticas (-50, -56, -61, -63° C) son similares a los eutécticos de los siguientes sistemas acuosos salinos (Borisenko, 1977):

-H2O-CaCl2-ClK, eutéctico teórico: - 50.5 °C

-H₂O-NaCl-CaCl₂, eutéctico teórico:-55 (-52 °C)

Los valores de fusión cercanos a -56,6 °C, indican la presencia de CO_2 , que fue confirmada por microespectrocopía Ramman y también se determinaron anhidrita, hematita y H_2S en las inclusiones tipo III y IV de estas venillas (Tabla 2).

En las figuras 4H y 4I se presentan los histogramas de frecuencias con las temperaturas de homogeneización (°C) y las salinidades expresadas en % en peso de NaCl equivalente para los distintos tipos de inclusiones alojadas en los núcleos de los cristales de cuarzo de las venillas tipo 6a.

Figura 4. Inclusiones fluidas de las venillas tipo 6a. A) Microfotografía a luz reflejada de venilla 6a con tennantita (Tn), calcopirita (cpy) y cuarzo. B) Fotografía con luz polarizada del núcleo de cuarzo Cz-1 con inclusiones fluidas rodeado del cuarzo Cz-2 límpido y este último en contacto con la tennantita. C) Asociaciones de inclusiones fluidas en las que coexisten inclusiones tipo II y

tipo IV. D) Proporción de los distintos tipos de inclusiones fluidos en las venillas 6a obtenida mediante técnica estadística. Se señalan los subtipos de inclusiones fluidas estudiados. E, F, G) Ejemplos de inclusiones fluidas primarias tipo III en cuarzo. H) Histograma de temperaturas de homogeneización para los distintos tipos de inclusiones de las venillas 6a. I) Histograma de salinidades expresadas en % en peso de NaCl equivalente para los distintos tipos de inclusiones de las venillas 6a.

4. DISCUSIÓN

La figura 5 presenta la secuencia paragenética y correlación entre las generaciones y texturas de cuarzo observadas por catodoluminescencia, las inclusiones fluidas analizadas y los pulsos de mineralización en las venillas analizadas del pórfido 4.

4.1 Estimación de presiones de entrampamiento

En la figura 6 se presenta una síntesis de las mediciones realizadas. Los datos microtermométricos de las inclusiones ricas en vapor y de las inclusiones multifásicas de salinidad elevada, pueden ser comparados con las superficies de estabilidad de dos fases (*"solvus"*) del sistema NaCl-H₂O (isobaras de Driesner y Heinrich, 2007) para determinar las presiones de entrampamiento. Las asociaciones de ebullición reflejan la temperatura real de entrampamiento del fluido (Roedder, 1984) y la presión fue calculada a partir de las temperaturas de homogeneización de las inclusiones ricas en sales tipos III y IV asociadas a las inclusiones tipo II. En las asociaciones de inclusiones fluidas sin evidencia de ebullición, las presiones también se determinaron a partir de las temperaturas de homogeneización pero en este caso representan sólo valores mínimos. A continuación se interpretan los datos microtermométricos obtenidos en las distintas venillas.

4.1.1 Venillas tipo 2a

Los rangos amplios de temperaturas de homogeneización de las inclusiones fluidas de las venillas tempranas 2a (desde 350° C a >550° C en las inclusiones tipo II; desde 350° C a >450° C en las tipo III y IV) indican fluctuaciones en la presión y en la temperatura de los fluidos hidrotermales que las formaron y que precipitaron el cuarzo y los sulfuros del primer pulso de mineralización de Cu-Au.

Algunas inclusiones fluidas de baja salinidad 3-11% NaCl eq.; subtipos $B_{20(2a)}$, B_{50-70} (2a) y $B_{60-70op(2a)}$) en estas venillas homogeneizaron a temperaturas muy altas (425 a >550 °C) y no se reconocieron inclusiones fluidas salinas (tipos III y IV) con estas temperaturas de homogeneización. Las primeras podrían representar el primer fluido acuoso exsuelto del magma a presiones litostáticas (>450 a >650 bares) y temperaturas (>425 a >550 °C) sobre la curva del solvus del fluido. Este fluido era químicamente complejo y contenía CO2, además de otras sales disueltas (H₂O-NaCl-CaCl₂-MgCl₂).

Depósito tipo Pórfido Cu-(Au-Mo)

II-6a III-2a 🛆 III-3 Δ # Proceso de disolución y/o corrosión de cuarzo III-5c III-6a 🛆 Proceso de fracturación de cuarzo IV-2a IV-3 IV-6a 1

Figura 5. Secuencia paragenética preliminar de las venillas del pórfido 4. Se ubican en el tiempo y correlacionan: las distintas generaciones de cuarzo de cada venilla estudiada, los procesos de fracturas, corrosión/disolución y de precipitación de cuarzo, los tipos de inclusiones fluidas en cada venilla, las asociaciones de inclusiones fluidas que evidencian episodios de separación de fases/ebullición, las alteraciones hidrotermales y los pulsos de mineralización.

Al ascender este fluido magmático de baja salinidad y descender su temperatura y presión, habría experimentado procesos de desmezcla en un fluido salino ("brine") y en un vapor de baja densidad (Burnham, 1979; Bodnar et al., 1985; Cline y Bodnar, 1991; Bodnar, 1995). El proceso de desmezcla se ha reconocido a partir de la asociación de inclusiones fluidas ricas en vapor (tipo II) e inclusiones de elevada salinidad (tipo III y IV) que homogeneizaron a temperaturas similares. Comúnmente se produce en los estadios iniciales de alteración de los pórfidos de Cu, dando lugar a la alteración potásica (Hedenquist et al., 1998) en condiciones de presión litostática y comportamiento plástico de las rocas debido a las temperaturas mayores de 400°C (Fournier, 1999). En este escenario los fluidos magmáticos hidrotermales tempranos habrían precipitado el cuarzo (Cz-1) en las venillas 2a.

Las asociaciones de inclusiones fluidas tipo II, III y IV hospedadas en el cuarzo de estas venillas, que homogeneizaron a vapor o por disolución de cristal de halita entre los 420° y 450 °C, también indicarían la separación local de vapor y un fluido salino a estas temperaturas, a una presión de entrampamiento de ~300 bares. Otras asociaciones de inclusiones fluidas tipo II y tipo IV que homogeneizaron a fase vapor y a fase líquida a temperaturas similares entre los 350° y 370°C, indicarían otro proceso de desmezcla del fluido a presiones de ~150 bares.

...... Asociación de IF que evidencia separación de fases (venillas tipo 2a)

...... Asociación de IF que evidencia separación de fases (venillas tipo 3)

Asociación de IF que evidencia separación de fases (venillas tipo 6a)

Figura 6. Síntesis de las mediciones realizadas en las inclusiones fluidas de las venillas analizadas. Los datos de temperaturas de homogeneización y de salinidad (% en peso de NaCl equivalente) se comparan con las superficies de estabilidad de dos fases (*"solvus"*) del sistema NaCl-H₂O (isobaras de Driesner y Heinrich, 2007). Esto permite determinar las presiones de entrampamiento reales para las asociaciones de inclusiones fluidas que evidencian un episodio de separación de fases y las presiones de entrampamiento mínimas para las asociaciones de inclusiones fluidas que no evidencian un proceso de separación de fases.

Un fluido que homogeneiza por disolución del cristal de halita no puede ser entrampado en equilibrio con una fase vapor en el sistema H₂O-NaCl (Roedder y Bodnar, 1980; Bodnar, 1994). Algunas inclusiones fluidas tipo III y IV homogeneizaron por disolución del cristal de halita a temperaturas significativamente mayores a la temperatura de desaparición de la burbuja de vapor y se sugiere que estas inclusiones habrían sufrido modificaciones posteriores al entrampamiento del fluido en la cavidad (ver Eastoe, 1978), es decir que las salinidades y temperaturas obtenidas para estas inclusiones no son representativas de los fluidos hidrotermales que fueron entrampados en ellas. No obstante, algunas inclusiones fluidas muestran la desaparición simultánea del cristal de halita y de la burbuja de vapor, confirmando condiciones de saturación de halita en el fluido y de desmezcla de fluidos a \sim 350° y a 150 bares de presión.

Los sulfuros depositados durante el primer pulso de mineralización de Cu-Au se asocian al cuarzo de la venilla 2b (Cz-2_(2b)) (Fig. 5) que precipitó en los espacios dejados por la disolución del cuarzo de la venilla 2a (Cz-1_(2a)). La figura 7 muestra los rangos de temperaturas (400 - 350 °C) y las presiones (< 300 bares) en los que se produce la disolución del cuarzo siempre en presencia de fluidos de baja salinidad (ver Fig. 7; Kennedy, 1950 y Fournier, 1983). Estos rangos de presiones y temperaturas son similares a los determinados para las asociaciones de inclusiones fluidas que evidencian desmezcla de fluidos en las venillas 2a. Se sugiere que en este rango de temperaturas y presiones se habría producido la disolución del cuarzo Cz-1_(2a) y en estos espacios precipitó el cuarzo Cz-2_(2b) junto a los sulfuros de Cu-Fe con Au.

En las inclusiones tipo II (bifásicas ricas en vapor) y en las inclusiones tipo IV (multifásicas) se identificaron cristales de calcopirita, lo que indica que ambas fases (líquido y vapor) deben haber actuado como medios eficientes para transportar el Cu.

4.1.2 Venillas tipo 3

En las venillas tipo 3, que se correlacionan con el pulso de mineralización de Mo en el pórfido 4 (Fig. 5), también se reconocieron asociaciones de inclusiones fluidas tipo IV (subtipo B_{20-30} sn (3)) y tipo II (subtipo B_{80-90} (3)) que homogeneizaron a similares temperaturas y que sugieren un proceso de desmezcla del fluido hidrotermal (Tabla 1). Para estas asociaciones se determinaron temperaturas y presiones de entrampamiento absolutas de 350 a 380°C y de 150 a 200 bares (Fig. 6). Estos rangos de temperatura y presión son levemente inferiores a los medidos en las inclusiones fluidas de las venillas 2a. Cabe destacar que la molibdenita precipita en contacto con el cuarzo más tardío de la venilla de menor temperatura de acuerdo a su baja luminescencia en las imágenes CL.

4.1.3 Venillas tipo 5

Las venillas 5 se formaron en equilibrio con la alteración fílica y en condiciones hidrostáticas. Las imágenes CL del cuarzo que rellena las venillas 5b muestran texturas de disolución, fracturamiento y varias generaciones de cuarzo debido a las fluctuaciones de la presión entre litostática e hidrostática. Como en el caso de las venillas 2 y 3, los fluidos

debieron evolucionar hacia salinidades menores y temperaturas en el rango de 400 a 350 °C a presiones < 300 bares, para producir la disolución retrógrada del cuarzo.

Los fluidos entrampados en el cuarzo y en la anhidrita de las venillas 5c son diferentes y es factible que estos minerales no hayan precipitado al mismo tiempo. Las inclusiones primarias acuosas, ricas en vapor y salinas en el cuarzo de estas venillas que homogeneizaron entre los 330 y 400° C, indican que la presión ocasionalmente disminuyó por debajo del *"solvus"* permitiendo la desmezcla del fluido. Probablemente este cuarzo corresponda a una venilla reabierta. Anhidrita parece haber precipitado a temperaturas y presiones mínimas de 270 - 200 °C y 100 bares, respectivamente, a partir de fluidos con salinidad baja a moderada (2,8- 11,7% en peso NaCl equivalente).

4.1.4 Venillas tipo 6a

En los núcleos del cuarzo de las venillas tipo 6a, relacionadas al segundo pulso de Cu-Au en el pórfido 4, también se hallaron asociaciones de inclusiones fluidas tipo I, II y IV (Tabla 1), que homogeneizaron a similares temperaturas y que sugieren la desmezcla de los fluidos. Las temperaturas y las presiones de entrampamiento determinadas para estas asociaciones son de 370 - 410 °C y ~170 bares (Fig. 6). Considerando estas temperaturas y presiones y la condición de no equilibrio con tennantita, se considera que estas inclusiones fluidas han sido entrampadas en estadios previos donde el cuarzo constituiría el relleno de venillas tempranas (posiblemente tipo 2a) que sufrieron reapertura. En consecuencia, estos datos no corresponden a los fluidos que precipitaron la tennantita+ pirita + Au y que produjeron la alteración argílica avanzada de sus paredes para formar los halos de dickita/caolinita.

Disolución de cuarzo y precipitación de la mineralización

Las imágenes de catodoluminescencia muestran que todas las venillas estudiadas tienen una compleja historia de crecimiento, revelada por la existencia de numerosas generaciones de cuarzo (Fig. 5) y texturas que indican reaperturas, disolución, corrosión y microfracturamiento (ver Rusk y Reed, 2002). En las venillas tipo 2a y 3, el cuarzo que precipita en los espacios dejados por disolución del cuarzo previo es el que está en contacto con los sulfuros. Esto indica que el descenso de la presión y de la temperatura de los fluidos promovió la precipitación de la mineralización.

Las texturas de disolución y corrosión del cuarzo de las venillas analizadas indican que en el sistema hidrotermal dominaban los fluidos en fase vapor por sobre los fluidos salinos (ver Landwington et al., 2010). Experiencias recientes han demostrado que los enlaces volátiles de S (H₂S y SO₂) en la fase vapor pueden actuar como agentes portadores del Cu y del Au (e.j. Nagaseki y Hayashi, 2008). El H₂S reconocido en algunas inclusiones fluidas de Altar por microespectrometría Ramman (Tabla 2) podría haber actuado como un complejo portador de Au (ver Gammons y Williams-Jones, 1997; Stefánsson y Seward, 2004). La descompresión y expansión del vapor, por fluctuaciones de presión como los reconocidos en las venillas de Altar, causan la rápida disminución de la solubilidad de los metales transportados por el vapor (ver William-Jones et al., 2002), lo que estaría relacionado a la precipitación del pulso Cu- Au de las venillas 2a. En los procesos de desmezcla, el Mo posiblemente tiende a ser transportado por el líquido salino (ver Heinrich, 1999; William-Jones y Heinrich, 2005) y esto explicaría la distinta distribución espacial entre las más altas leyes de Cu-Au y las más altas leyes de Mo en el sistema Altar.

Figura 7. Solubilidad del cuarzo en función de la presión, la temperatura y la salinidad del fluido (según datos de Kennedy, 1950 y de Fournier, 1983).

5. CONCLUSIONES

El análisis de las inclusiones fluidas de las venillas mineralizadas del pórfido 4, apoyado por imágenes de catodoluminescencia de las texturas de cuarzo, ha permitido obtener información preliminar sobre las características de los fluidos hidrotermales del sistema Altar. Todas las venillas analizadas muestran una compleja historia de crecimiento, revelada por la existencia de numerosas generaciones de cuarzo y texturas que indican reaperturas, disolución, corrosión, microfracturamiento, precipitación de minerales y de venillas más nuevas en las antiguas. Esta compleja historia de los fluidos magmáticos cuyas T y P fluctuaron entre un sistema cerrado y abierto, quedaron registradas en las IF alojadas en los minerales de las venillas, en especial en el cuarzo. En un sistema de esta naturaleza, es difícil

obtener datos representativos de las composiciones y temperaturas a las cuales los fluidos fueron entrampados originalmente, sin que se hayan modificado con posterioridad.

Los datos de inclusiones fluidas sugieren la existencia de un primer fluido acuoso exsuelto del magma a presiones litostáticas (> 450 - 650 bares) y temperaturas (>425 a >550 °C), portador de CO₂ y sales disueltas (NaCl-CaCl₂-MgCl₂).

Al ascender este fluido magmático y descender su temperatura y presión se habría producido un proceso de desmezcla en un fluido salino (*"brine"*) y en un vapor de baja densidad entre los 420 a 450 °C y ~300 bares. En condiciones de presión hidrostática, estos parámetros se corresponden con una profundidad de 3 km, a la que se habrían formado las venillas 2a. Hay evidencias de otro episodio de desmezcla a los 350 y 370°C y ~150 bares, consistente con la historia compleja de crecimiento de estas venillas.

En el rango de temperatura entre 400 y 350 °C y a una presión <300 bares de los fluidos, que corresponde al campo de disolución retrógrada del cuarzo Cz-1 (2a), precipitó el cuarzo Cz-2 _(2b) junto a los sulfuros de Cu-Fe con Au del primer pulso de mineralización Cu-Au.

Las inclusiones fluidas del cuarzo Cz-1 de las venillas tipo 3 reflejan un episodio de desmezcla de fluidos entre 350 y 380°C y 150 a 200 bares en condiciones hidrostáticas levemente inferiores a las de las venillas 2a. La molibdenita precipita junto a un cuarzo de menor temperatura, en las cavidades de disolución del cuarzo previo.

Los procesos de disolución retrógrada del cuarzo y la precipitación de nuevas generaciones de este mineral, obedecen a la disminución de la presión y de la temperatura de los fluidos y están directamente relacionados a la precipitación de sulfuros en las venillas tipo 2a y 3, y también se reconocen en las venillas 5b.

Las inclusiones fluidas en anhidrita de las venillas 5c reflejan temperaturas y presiones mínimas de 270 - 200 °C y 100 bares, respectivamente. Este mineral debe haber precipitado a partir de fluidos con salinidad baja a moderada (2,8- 11,7% en peso NaCl equivalente).

REFERENCIAS

- Bodnar, R.J., Burnham, C.W., y Sterner, S.M., 1985. Synthetic fluid inclusions in natural quartz. III. Determination of phase equilibrium properties in the system H2O-NaCl to 1000°C and 1500 bars: Geochimica et Cosmochimica Acta, 49, 1861–1873.
- Bodnar, J.R., y Vityk, M.O., 1994. Interpretation of microthermometric data for H2O-NaCl fluid inclusions, in De Vivo, B., and Frezzotti, M.L., eds., Fluid iInclusions in minerals: Methods and applications: Blacksburg, VA, Virginia Technical Institute, 117–130.

- Bodnar R.J., 1994. Synthetic fluid inclusions: XII. The system H2O– NaCl. Experimental determination of the halite liquidus and isochores for 40 wt.% NaCl solution. Geochim Cosmochim Acta, 58, 1053–1063.
- Borisenko A. S., 1977. Study of the salt composition of solutions in gas-liquid inclusions in minerals by the cryometric method. Soviet Geology and Geophysics, 18, 11-19.

Brown y Lamb, 1986, 1987, 1989. Fórmulas utilizadas en el programa FLINCOR.

- Burnham, C.W., 1979. Magmas and hydrothermal fluids, in Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits, 2nd ed.: New York, Wiley and Sons, 71–136.
- Cline, J.S., y Bodnar, R.J., 1991. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt?: Journal of Geophysical Research, 96, 8113–8126.
- Driesner, T., y Heinrich, C.A., 2007. The system H2O-NaCl. Part I: Correlation formulae for phase relations in temperature-pressure-composition space from 0° to 1000°C, 0 to 5000 bars, and 0 to 1 X-NaCl: Geochimica et Cosmochimica Acta, 71, 4880–4901.
- Eastoe, C.J., 1978. Fluid inclusion study of the Panguna porphyry copper deposit.Bougainville, Papua-New-Guinea: Economic Geology, v. 73, p. 721–748.
- Fournier, R.O., 1983. A method of calculating quartz solubilities in aqueous sodium-chloride solutions: Geochimica et Cosmochimica Acta, 47, 579–586.
- Fournier, R.O., 1999. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment: Economic Geology, 94, 1193–1211.
- Gammons, C.H., y Williams-Jones, A.E., 1997. Chemical mobility of gold in the porphyryepithermal environment: Economic Geology, 92, 45–59.
- Goldstein y Reynolds, 1994. Systematics of Fluid Inclusions in Diagenetic Minerals, SEPM Short Course 31. Society of Sedimentary Geology.
- Hedenquist, J.W., Arribas, A., y Reynolds, T.J., 1998. Evolution of an intrusion centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines: Economic Geology, 93, 373–404.
- Heinrich, C.A., Günther, D., Audétat, A., Ulrich, T., y Frischknecht, R., 1999. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions: Geology, 27, 755–758.
- Kennedy, G.C., 1950. A portion of the system silica-water: Economic Geology, v. 45, p. 629–653.
- Landtwing, M., Furrer, C., Redmond, P., Pettke, T., Guillong, M. y Heinrich, C., 2010. The Bingham Canyon Porphyry Cu-Mo-Au Deposit. III. Zoned Copper-Gold Ore Deposition by Magmatic Vapor Expansion. Economic Geology, 105, 91–118.

- Nagaseki, H., y Hayashi, K.I., 2008. Experimental study of the behavior of copper and zinc in a boiling hydrothermal system: Geology, 36, 27–30.
- Nash J.T., 1976. Fluid inclusion petrology-data from porphyry copper deposits and application to exploration. U. S. Geology Survey Prof. paper 907-D.
- Roedder, E., 1984. Fluid inclusions: Reviews in Mineralogy, v. 12, 644 p.
- Roedder E, Bodnar R.J., 1980. Geologic pressure determinations from fluid inclusion studies. Annual Review of Earth and Planetary Sciences, 8, 263–301
- Rusk, B.G. y Reed, M.H., 2002. Scanning electron microscope-cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana. Geology, 30, 727-730.
- Rusk, B. G., Lowers, H.A., Reed, M.H., 2008. Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation. Geology, 36; 547-550.
- Shepherd T, J., Rankin A. H y Alderton D. H. M, 1985. A practical guide to fluid inclusion studies. Blackie and Son, New York.
- Stefánsson, A., y Seward, T.M., 2004. Gold complexing in aqueous sulphide solutions to 500°C at 500 bar: Geochimica et Cosmochimica Acta, v. 68, p. 4121–4.
- Williams-Jones, A.E., Migdisov, A.A., Archibald, S.M., y Xiao, Z.F., 2002. Vapor-transport of ore metals: Geochemical Society Special Publication 7, p. 279–305.
- Williams-Jones, A.E., y Heinrich, C.A., 2005. Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits: Economic Geology, 100, 1287–1312.

Tabla 1. Resumen	de las cará	icterística	is de las IF de	las venillas del pórfido 4					
Tipo de venilla	Origen	Tipo IF	Subtipo	fases sólidas	Salinidades % CINa eq.	Th (° C)	Modo	Ebullición	Presión (bars)
2a	Р	Ι	${ m B}_{20(2a)}$	ninguna	3,52 - 7,31	425 - 540	L		500-700 (mín)
2a	Р	Π	${ m B}_{ m 80-90\ (2a)}$	ninguna	3,5 - 7,3	420 - 480	>	X	150-350 (real)
2a	Р	П	${ m B}_{ m 50-70\ (2a)}$	ninguna	3,9 - 6,5	>550			500-650 (mín)
2a	Р	Ш	${ m B}_{10-30}{ m H}_{(2a)}$	halita	30,5 - 48,5	340 - 410 I	L - dis de hal.	X	
2a	Р	III	${ m B}_{70-80}{ m op}_{(2a)}$	opaco - anhidrita	n.a	390 - 450	>		
2a	Р	III	$B_{60-70}op_{(2a)}$	opaco	n.a	>550			
2a	Р	N	$\mathrm{B}_{5-40}\mathrm{sn}$ (2a)	halita, anhidrita, hematita, calcopirita, silvita	32 - 70	300 - 550	L - dis de hal.	Х	300 (real), 150 (real)
2a	S	Ι	${ m B}_{10(2a)}$	ninguna	0,66 - 3,7	250 -300	L		
3	Р	I	$(B_{20})_{(3)}$	ninguna	4,3 - 9,5	220 - 264	Г		<100 (mín)
3	Р	Π	$(B_{80-90})_{(3)}$	ninguna	6,2 - 6,3	380 - 450	>	x	150-200 (real)
3	Р	Ш	${ m B}_{20-40s(3)}$	anhidrita, halita	n.a	380	L	X	
3	Р	IV	$B_{20-30}Sn_{(3)}$	halita, anhidrita, hematita, silvita, calcopirita	22 - 45	370 - 473	L - dis de hal.	Х	150-200 (real)
5c	Р	I	${ m B}_{10-20(5c)}$	ninguna	3,2 - 11,7	200 - 260	Г		< 100 bares (mín)
5c	Р	П	${ m B}_{80-90(5c)}$	ninguna	2,8	385 - 388	>		
5c	Р	Ш	$\mathrm{B}_{10\text{-}20}\mathrm{S}_{(5\mathrm{c})}$	halita, opaco indiferenciado	n.a	230 - 400	L		
6a	Р	I	$\mathrm{B}_{20(6a)}$	ninguna	9,1 - 13,9	360 - 390	L		
6a	Р	Π	${ m B}_{ m 80-90(6a)}$	ninguna	3,2	380 - 440	>	x	250 bares (real)
6a	Р	Ш		halita, hematita, opaco	39,8 - 46,4	270 - 395	L - dis de hal.	X	250 bares (real)
6a	Р	N		halita, silvita, anhidrita, opacos	34 - 45	250 - 386	dis de hal.	Х	
Notas: dis de hal: di	solución de	el cristal d	le halita; L: fas	se líquida; V: fase vapor; P: primaria; S: secunda	ria; n.a: no analizado; Th:	temperatura d	e homogeneizac	ción.	
(mín): presión mínii	ma de entra	ampamien	nto; (real): pres	ión real de entrampamiento.					

ep	
mperatura d	
In: te	
i; S: secundaria; n.a: no analizado;	
: primaria;	to.
': Iase vapor; F	entrampamien
ase liquida; v	esión real de e
a; L: I	al): pr
istal de nalit	amiento; (rea
ucion del cri	de entrampa
al: disol	mínima
de n	ión
as: dis de n	n): presión

	hematita	:	:	:	:	X	
aman	Z	:	:	:	:	:	
scópio Ra	HS	:	:	:	:	:	Х
nicroespectro	anhidrita	Х	:	:	:	X	Х
con el n	C02	Х	X	:	:	Х	Х
s análisis de IF	Subtipo de IF	$\mathrm{B}_{20(2a)}$	${ m B}_{ m 80-90\ (2a)}$	$(\mathrm{B}_{80-90})_{(3)}$	${ m B}_{20\text{-}30}{ m Sn}_{(3)}$:	
<mark>sultados de lo</mark>	Tipo de IF	Ι	Π	Π	IV	III	IV
de los re	Venilla	2a	2a	З	ω	6a	6a
men	°N	1	0	ŝ	4	S	9
Tabla 2. Resu	Muestra	A-43-730	A-43-730	A-55-635	A-55-635	A-53-111	A-53-111

F		
	0	Ċ
	٩	
	è	
•	È	
	ž	
	c	2
	ç	
1		
(5	1
	c	
	ç	
•	F	
	0	1
	ç	
7		
	5	,
٢	2	2
۲	1	ı
	υ	ſ
	0	
•	È	
ļ	T	
	ç	ŗ
	C	
	Ċ	
•	5	Ċ
	ς	2
F	ł	
	٩	2
1	C	
	¢	
`	F	
	d	2
	Ę	
	ç	2
	Ę	
	à	2
•	ţ	
	Ě	
•	ç	
ž	>	>
1		
•	_	
	ģ	2
	ç	
-	C	2

Apéndice	1. Mici	rotermo	metrí	a de Inclu	isiones Flu	iidas -Venil	llas tipo 2a - Inclu	Isiones Til	loc							
									Congel	amiento			0	alentamiento		
									Te	Tm	Th CO ₂	ThL	Tm	Salinidad	Sistema	Fórmula cálculo de salinidad
N° Mu	estra C	Drigen	Tipo	Subtipo		Proporc.	Forma	tamaño				(°C) d	clatrato	% eq. NaCl		
1 A-43	3-730	Р	Ι	$\mathrm{B}_{20\ (2a)}$	L+V	0, 8-0, 2	regular	10μ	-62	-2,3	25	425	8.0	3,89	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
2 A-43	3-730	Ь	Ι	$B_{20\ (2a)}$	L+V	0,9-0,1	ovoide	10μ	-60,4	-2,2	22	540	8.0	3,90	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
3 A-4(5-261	Ь	Ι	$B_{20\ (2a)}$	L+V	0, 8-0, 2	regular	10μ	-55	1	24	425	7.0	5,68	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
4 A-43	3-730	Р	Ι	$B_{20\ (2a)}$	L+V	0, 8-0, 2	ovoide	20µ	-51	-2,3	24	509	8,2	3,52	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
5 A-4(5-261	Р	Ι	$B_{20\ (2a)}$	L+V	0, 8-0, 2	regular	10μ	-63	-28	22,3	450	7,7	4,43	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
6 A-4t	5-261	Ь	Ι	$B_{20\ (2a)}$	L+V	0, 8-0, 2	ovoide	10μ	-63	-30	25,9	475,5	7,2	5,33	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
7 A-4(5-261	Ь	Ι	$B_{20\ (2a)}$	L+V	0,9-0,1	regular	10μ	-54	-30	26	425	6.0	7,37	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
8 A-4(5-261	Ь	Ι	$B_{20\ (2a)}$	L+V	0, 8-0, 2	ovoide	10μ	-63	-30	24	540	6,5	6,54	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
9 A-4(5-261	Ь	Ι	$B_{20\ (2a)}$	L+V	0,9-0,1	irregular	10μ	-48	-30	24	425	8.0	3,89	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
10 A-4(5-261	Ь	Ι	$B_{20\ (2a)}$	L+V	0,9-0,1	regular	10μ	-60	-28	24	509	8.0	3,89	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
11 A-4t	5-261	Ь	Ι	$B_{20\ (2a)}$	L+V	0, 7-0, 3	regular	10μ	-56	-25	24,5	450	7,1	5,5	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
12 A-4t	5-261	Р	Ι	${ m B}_{20\ (2a)}$	L+V	0, 8-0, 2	regular	10μ	-53	-26	22,3	475,5	8,2	5,52	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
13 A-57	-672	\mathbf{s}	Ι	$B_{10\ (2a)}$	L+V	0, 8-0, 2	ovoides	10 μ		-2		250		3,2	H2O-NaCl	Brown & Lamb (FLINCOR)
14 A-57	-672	\mathbf{s}	Ι	$B_{10\ (2a)}$	L+V	0, 8-0, 2	ovoide	5 μ		-0,4		300		0,66	H2O-NaCl	Brown & Lamb (FLINCOR)
15 A-57	-672	S	Ι	${\rm B}_{10\ (2a)}$	L+V	0,8-0,2	ovoide alargada	$< 10 \ \mu$		-2,3		300		3,7	H2O-NaCl	Brown & Lamb (FLINCOR)
Abreviatu	ras: L,	líquido	; V, vɛ	apor; ha:	halita; o: c	opaco; sn: n	núltiples fases sól	idas; P: pı	imarias	; S: secu	ındarias					•

											Ŭ	Calentamiento		
									Th	ThV	Tm	Salinidad %	Sistema	Fórmula cálculo de salinidad
°N	Muestra	Origen	Tipo	Subtipo		Proporc.	Forma	tamaño	CO_2	(°C)	clatrato	eq. NaCl		
1	a-43-730	Р	Π	${ m B}_{ m 80-90\ (2a)}$	V+L	0,9-0,1	ovoide	20µ	23,5	430	6.0	7,37	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
ы	a-43-730	Р	Π	${ m B}_{ m 80-90\ (2a)}$	V+L	0,6-0,4	regular	10μ	22,3	440	8.0	3,89	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
Э	a-43-730	Р	Π	${ m B_{80-90\ (2a)}}$	V+L	0,8-0,2	ovoide	10μ	23,5	420	8,2	3,52	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
4	a-43-730	Р	Π	${ m B}_{ m 80-90\ (2a)}$	V+L	0,8-0,2	ovoide	10μ	25	440	7.0	5,68	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
5	a-43-730	Р	Π	${ m B_{80-90\ (2a)}}$	V+L	0,9-0,1	ovoide	10μ	22,3	427	8,2	3,52	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
9	a-43-730	Р	Π	${ m B}_{ m 80-90~(2a)}$	V+L	0,9-0,1	ovoide	20µ	25,9	440	6.0	7,3	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
7	a-43-730	Р	Π	${ m B_{80-90\ (2a)}}$	V+L	0, 8-0, 2	ovoide	10μ	20	480	8.0	3,89	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
8	a-43-730	Р	Π	${ m B_{80-90\ (2a)}}$	V+L	0,5-0,5	ovoide	10μ		505				
6	a-43-730	Р	Π	${ m B_{80-90\ (2a)}}$	V+L	0,7-0,3	regular	20µ		198				
10	a-43-730	Р	Π	${ m B}_{ m 80-90\ (2a)}$	V+L	0, 8-0, 2	regular	10μ		400				
11	a-43-730	Р	Π	${ m B_{80-90\ (2a)}}$	V+L	0, 8-0, 2	regular	10μ		505				
12	A-57-672	Р	Π	${ m B_{80-90\ (2a)}}$	V+L	0, 8-0, 2	regular	20 µ		310				
13	A-57-672	Ъ	Π	${ m B}_{ m 80-90\ (2a)}$	V+L	0,9-0,1	cristal negativo	20 µ		306				
14	A-57-672	Р	Π	${ m B_{80-90\ (2a)}}$	V+L	0,9-0,1	cristal negativo	20 µ		310				
15	A-57-672	Ъ	Π	${ m B_{80-90\ (2a)}}$	V+L	0,8-0,2	cristal negativo	10 µ		400				
16	A-57-672	Р	Π	${ m B_{80-90\ (2a)}}$	V+L	0,95-0,05	cristal negativo	20 µ		401,2				
17	A-57-672	Ъ	Π	${ m B_{80-90\ (2a)}}$	V+L	0,8-0,2	regular	20 µ		422				
18	A-57-672	Р	Π	${ m B_{80-90\ (2a)}}$	V+L	0,9-0,1	regular	20 µ	22	355	8.0	3,89	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
19	A-57-672	Р	Π	${ m B}_{ m 80-90\ (2a)}$	V+L	0,9-0,1	regular	15 µ		376				
20	A-57-672	Р	Π	${ m B}_{ m 80-90\ (2a)}$	V+L	0,7-0,3	cristal negativo	10 µ		546				
21	A-57-672	Ъ	Π	${ m B}_{ m 80-90\ (2a)}$	V+L	0,9-0,1	regular	10 µ		500				
22	A-57-672	Ъ	Π	${ m B}_{ m 80-90\ (2a)}$	V+L	0,9-0,1	cristal negativo	10 µ		360,2				
23	A-57-672	Ч	Π	${ m B}_{ m 80-90\ (2a)}$	V+L	0,7-0,3	regular	ф 09		499				
24	A-57-672	Ъ	Π	${ m B}_{ m 80-90\ (2a)}$	V+L	0,9-0,1	rectangular	10 µ		380				
25	A-57-672	Р	Π	${ m B_{80-90\ (2a)}}$	V+L	0,9-0,1	regular facetada	20 µ		373				
26	A-57-673	Р	Π	$B_{80-90(2a)}$	V+L	0,8-0,2	regular facetada	20 µ		455				
27	A-57-672	Р	Π	$B_{50-70(2a)}$	V^+L	0,5-0,5	regular facetada	10 µ	22	>550	8.0	3,90	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
28	A-57-672	Р	Π	$B_{50-70(2a)}$	V+L	0,7-0,3	regular	10 µ	22	>550	8,2	3,52	H2O-CO2-NaCl	Brown & Lamb (FLINCOR)
29	A-57-672	Ъ	Π	$B_{50-70(2a)}$	V+L	0,6-0,4	regular	20 µ		>550				
30	A-57-672	Р	Π	${ m B}_{50-70\ (2a)}$	V^+L	0,5-0,5	cristal negativo	10 µ		>550				
31	A-57-672	Р	Π	$B_{50-70(2a)}$	V+L	0,5-0,5	cristal negativo	10 µ		>550				
Abre	viaturas: L,	, líquido;	V, vap	or; ha: hali	ta; o: op	aco; sn: m	núltiples fases sóli	das; P: pi	imaria	s; S: seci	indarias			

Apéndice 2. Microtermometría de Inclusiones Fluidas -Venillas tipo 2a - Inclusiones Tipo II

		ula salinidad		Vityk 1994	Vityk 1994	Vityk 1995	Vityk 1996		Vityk 1994	Vityk 1995	Vityk 1996	Vityk 1995	Vityk 1996																	
		Fórn cálculo de		odnard and	odnard and	odnard and	odnard and		odnard and																					
	Sistema			H2O-NaCl B	H2O-NaCl B	H2O-NaCl B	H2O-NaCl B		H2O-NaCl B																					
nto	Salinidad	6 eq. NaCl		48,5	37,4	48,5	48,5		31,9	36	36	55,8	30,5																	
Calentamie	2° TmS	ha (°C) 🥠		410	289	412	410		205.9	275	269	469	170																	
	ıL Tdesa	C) p bur.		260	250	200	190)5			45		39																	
	ThV TI	•°C) (°						4			č		3					420	415	410	390	400	450	455	404	401	>550	>550 >550	>550 >550 >550	>550 >550 >550 >550
ongelamie	Le Tm		56 -4.6	55 -2.2									(-)20	55	44	49 -29	9-													
C		s hijas	alita -	alita -	alita	alita -	alita -	alita -	alita	idrita	idrita	idrita	paco	o indif	paco	o indif	o indif	o indif	o indif	o indif o indif	o indif o indif o indif	o indif o indif o indif o indif								
		o fase:	με	he	anh	anh	anh	ło	opac	lo	opac	opac	opac	opac	opac	opac opac opac	opac opac opac													
		tamañ	10μ	20μ	20μ	20µ	10μ	10μ	10 µ	10 µ	10 µ	20 µ	20 µ	10μ	10μ	10μ	10μ	10μ	10μ	10μ	10μ	20 µ	20μ	10 µ	20 µ	10 µ	10 µ	10 µ 10 µ	10 µ 10 µ 20 µ	10 µ 10 µ 20 µ 20 µ
		Forma	ovoide	irregular	regular	ovoide	ovoide	regular	regular	regular facetada	regular	regular	cristal negativo	regular	ovoide	regular	ovoide	regular	regular	regular	ovoide	cristal negativo	ovoide	regular	regular	regular facetada	regular	regular regular	regular regular regular	regular regular regular regular facetada
		Proporc.	0,7-0,3	0,85-0,1-0,05	0,85-0,1-0,05	0,85-0,1-0,05	0,85-0,1-0,05	0,5-0,3-0,2	0.5-0.4-0.1	0.5-0.3-0.1	0.5-0.4-0.1	0.6-0.35-0.05	0.6-0.3-0.1	0.85-0.1-0.05	0.85-0.1-0.05	0.85-0.1-0.05	0.7-0.3	0,7-0,3-tr	0,7-0,3-tr	0,8-0,2-tr	0,9-0,1-tr	0.8-0.2-tr	0,8-0,2-tr	0.8-0.2	0.8-0.2-tr.	0.7-0.3	0.6 - 0.4	0.6-0.4 0.6-0.4-tr	0.6-0.4 0.6-0.4-tr 0.6-0.4	0.6-0.4 0.6-0.4-tr 0.6-0.4 0.6-0.4
			L+V+ha	L+V+ha	L+V+ha	L+ha+V	L+ha+V	L+ha+V	V+L+Ha	V+L+Ha	L+V+Ha	L+V+Ha	L+V+Ha	L+V+s	L+V+s	L+V+s	L+V+s	L+V+s	$\rm L+V+S$	L+V+s	V+L+0	V+L+0	V+L+0	V+L+0	V+L+0	V+L+0	V+L+0	V+L+0 V+L+0	V+L+0 V+L+0 V+L+0	V+L+0 V+L+0 V+L+0
		Subtipo	$B_{10-30}H_{(2a)}$	$B_{70-80}op_{(2a)}$	B ₇₀₋₈₀ op (2a)	$B_{60-70}op_{(2a)}$	B_{60-70} op (2a) B_{60-70} op (2a)	$\begin{array}{l} B_{60-70} \text{ op } {}^{(2a)} \\ B_{60-70} \text{ op } {}^{(2a)} \\ B_{60-70} \text{ op } {}^{(2a)} \end{array}$	$\begin{array}{c} B_{60-70} op (_{2a}) \\ B_{60-70} op (_{2a}) \\ B_{60-70} op (_{2a}) \\ B_{60-70} op (_{2a}) \end{array}$																					
		Tipo	III	Η	Η	Ш	Ш	Ш	Π	Η	Η	Ш	Ш	Π	Ш	Η	III	III	Ш	Π	Ш	Ш	Ш	Ш	Ш	Ш	Ξ			
		Origen	Р	Р	Р	Р	Р	Р	Ь	Р	Р	Р	Р	Ь	Р	Р	Р	Ь	Р	Ь	Р	Р	Р	Р	Р	Р	Ь	ЧЧ	4 4 4	4 4 4 4
		Muestra	a-43-730	a-43-730	a-43-730	a-43-730	a-43-730	a-43-730	A-57-672	A-57-672	A-57-672	A-57-672	A-57-672	a-46-261	a-46-261	a-46-261	a-46-261	a-43-730	a-43-730	a-43-730	a-43-730	A-57-672	a-43-730	A-57-672	A-57-672	A-57-672	A-57-672	A-57-672 A-57-672	A-57-672 A-57-672 A-57-672	A-57-672 A-57-672 A-57-672 A-57-672
		°	1	ы	ε	4	5	9	٢	8	6	10	11	12	13	14	15	10	11	12	14	15	16	28	29	23	22	22 24	22 24 25	22 24 25 26

Apéndice 3. Microtermometría de Inclusiones Fluidas - Venillas tipo 2a - Inclusiones Tipo III

										Te	Tm	ThV Thi	, 1° Tm	2° TmS	Salinidad	Sistema	Fórmula cálculo de
												°C) (°C	(°C)	ha (°C)	% eq.		salinidad
°N	Muestra	Origen	Tipo	Subtipo		Proporc.	fases hijas	Forma	tamaño						NaCl		
1	A-43-730	Ч	N	$B_{5.40}sn_{(2a)}$	L+ha+V	0,85-0,1-0,05	halita-hematita	ovoide	20µ			250	_	330	40,6	H2O-NaCl	Bodnard and Vityk 199
5	A-43-730	Ч	\geq	B ₅₋₄₀ Sn (2a)	L+V+Sn	0,6-0,2-0,2	5 transparentes-1 opaco	regular	10μ	-57	31	350	334		40,6	H2O-NaCl	Bodnard and Vityk 199
ŝ	A-43-730	Ь	\geq	B ₅₋₄₀ sn (2a)	L+V+Sn	0,85-0,1-0,05	halita, sil, 3 transparentes-opaco	regular	10μ	-62	19.8	322	270	380	65	H2O-NaCI-K(Cl Roedder 1984
4	A-43-730	Ч	\geq	B ₅₋₄₀ Sn (2a)	L+V+Sn	0, 7 - 0, 2 - 0, 1	halita-hematita-opaco	ovoide	10μ	-61	-28	320	_	380	45,3	H2O-NaCl	Bodnard and Vityk 199
5	A-43-730	Р	\geq	B ₅₋₄₀ Sn (2a)	L+V+Sn	0,6-0,3-0,1	3 opacos-transparente	regular	20µ	-63	-21	240	_	350	45,3	H2O-NaCl	Bodnard and Vityk 199
9	A-43-730	Ь	\geq	B ₅₋₄₀ sn (2a)	L+V+Sn	0, 7 - 0, 2 - (0, 1)	halita-transparente-3 opacos	irregular	10μ			325		380	45,3	H2O-NaCl	Bodnard and Vityk 199
2	A-43-730	Ь	\geq	B ₅₋₄₀ sn (2a)	L+V+ha+o	0,6-0,2-(0,2)	halita, hematita, transp bajo rel.	regular	20μ			385		350	42,4	H2O-NaCl	Bodnard and Vityk 199
8	A-43-730	Ч	\geq	B ₅₋₄₀ Sn (2a)	L+V+ha+o	0, 8-0, 1-0, 1	halita-opaco	regular	10μ			331		348	42	H2O-NaCl	Bodnard and Vityk 199
6	A-43-730	Р	\geq	B ₅₋₄₀ Sn (2a)	L+V+ha+o	0,85-0,1-0,05	halita-opaco	regular	20µ			364		280	36,7	H2O-NaCl	Bodnard and Vityk 199
10	A-43-730	Р	\geq	B ₅₋₄₀ Sn (2a)	L+V+ha+hem	0,6-0,2-(0,2)	halita-hematita	regular	10μ			250	_	340	41,5	H2O-NaCl	Bodnard and Vityk 199
Ξ	A-43-730	Ь	\geq	B ₅₋₄₀ sn (2a)	L+V+Sn	0, 8-0, 1-0, 1	halita-transp-hem	ovoide	20μ			255	280	340	99	H2O-NaCI-K(Cl Roedder 1984
12	A-43-730	Ч	\geq	B ₅₋₄₀ Sn (2a)	L+V+Sn	0,5-0,3-(0,2)	transparente- 2 opacos	regular	10μ			370	_	260	35,3	H2O-NaCl	Bodnard and Vityk 199
13	A-57-672	Ч	\geq	$B_{5.40}sn$ (2a)	V+L+Ha+Sil	0.9-0.1	halita-silvita	regular	20 µ			392					
14	A-57-672	Ч	\geq	B ₅₋₄₀ Sn (2a)	V+L+Ha+Sil	0.9-0.1	halita-silvita	regular	20 µ			376					
15	A-57-672	Ь	\geq	B ₅₋₄₀ Sn (2a)	L+V+Ha+o	0.5-0.3-0.1-0.1	halita-opaco indif	regular	10 µ			340	_				
16	A-57-672	Ь	\geq	B ₅₋₄₀ Sn (2a)	L+V+Ha+o	0.5-0.3-0.2	halita-opaco indif	ovoide	20 µ			335					
17	A-57-672	Ь	\geq	B ₅₋₄₀ Sn (2a)	L+V+Ha+o	0.4-0.3-0.2-0.1	halita-opaco	regular	20 µ			225		200	31,9	H2O-NaCl	Bodnard and Vityk 199
19	A-57-672	Ч	\geq	B ₅₋₄₀ sn (2a)	L+V+20		opacos indif	rectangular	10 µ			360	_				
20	A-57-672	Ч	\geq	$B_{5-40}sn_{(2a)}$	L+V+o	0.6-0.4	opaco indif	ovoide	20 µ			330	_				
21	A-57-672	Ч	\geq	$B_{5-40}sn_{(2a)}$	Ha+L+V+o	0.4-0.3-0.3-tr.	halita-opaco indif	regular	10 µ			346		345	41,5	H2O-NaCl	Bodnard and Vityk 199
22	A-57-672	Ч	\geq	$B_{5.40}sn_{(2a)}$	Ha+L+V+Sil (.4-0.3-0.25-0.05		regular	10 µ			242		271	36	H2O-NaCl	Bodnard and Vityk 199
23	A-57-672	Ч	2	$B_{5-40}sn_{(2a)}$	Ha+L+V+o		halita-opaco indif	regular	10 µ			330	_				
24	A-57-672	Ь	\geq	B ₅₋₄₀ sn (2a)	Ha+L+V+Sil	0.4-0.3-0.2-0.1	halita-silvita	regular	20 µ			368		250	34,7	H2O-NaCl	Bodnard and Vityk 199
55	A-57-672	Ч	2	Beansh (2a)	Sn+V+L	0.4 - 0.3 - 0.3	halita-silvita-opaco indif	regular	10 µ			310.	5				

Apéndice 4. Microtermometría de Inclusiones Fluidas - Venillas tipo 2a - Inclusiones Tipo IV

2
ipo
Es
nclusione
-
, 2a
tipo
enillas
2
Fluidas
clusiones
Ĭ
de
icrotermometría
Σ
Apéndice 4.
Continuación
\cup

	Fórmula cálculo de salinidad		Bodnard and Vityk 1995	l Roedder 1984	Bodnard and Vityk 1996	Bodnard and Vityk 1997	l Roedder 1984	l Roedder 1985	Bodnard and Vityk 1997		Bodnard and Vityk 1997	l Roedder 1984	Bodnard and Vityk 1997	Bodnard and Vityk 1999				Bodnard and Vityk 1997	Bodnard and Vityk 1998	l Roedder 1984	Bodnard and Vityk 1996			Bodnard and Vityk 1996	Bodnard and Vityk 1996	Bodnard and Vityk 1996		
	Sistema		H2O-NaCl	H2O-NaCI-KC	H2O-NaCl	H2O-NaCl	H2O-NaCI-KC	H2O-NaCI-KC	H2O-NaCl		H2O-NaCl	H2O-NaCI-KC	H2O-NaCl	H2O-NaCl				H2O-NaCl	H2O-NaCl	H2O-NaCI-KC	H2O-NaCl			H2O-NaCl	H2O-NaCl	H2O-NaCl		
	Salinidad %	eq. NaCl	49,7	70	47,4	47,5	65	65	49,7		53,4	70	53,4	53				38,2	52	55	35,3			36	36	38,9		
0	2° TmS ha	(°C)	418	430	398	397	418	418	418		450	454	450	450				300	440	440	260			275	270	310		
entamiente	l° Tm	(°C)		340			187	280				343								152								
Cal	Tdesap bur.		160	340	315	315	365	360		410	235	365	430	430					362		453	435		540	474	447		
ongelamiento	e Tm ThL (°C)										9 30,9		4 -25	0 -19	6 -0,8	480	480	408						(-)4		(-)5	500	S: secundarias
Ŭ	L	amaño	10μ	20μ	10μ	10μ	10μ	20µ	10μ	20 µ	10μ -5	10μ	10μ -6	10μ -6	10μ -5	20μ	20μ	10μ	10μ	10μ	10μ	10μ	20μ -€	10 µ	20 µ	80 µ	20 µ	primarias;
		Forma	regular	regular	regular	regular	irregular	regular	regular	regular	ovoide	regular	ovoide	regular	irregular	regular	regular	regular	regular	regular	irregular	regular	irregular	regular	regular	regular	ovoide	es sólidas; P:
		fases hijas	halita-transp	halita-silvita	halita-hematita-opaco	halita-hematita- 2 opacos	halita-transparente-opaco	2 transparentes	halita-hematita	halita-silvita-2 opacos indif	7 transparentes	halita-silvita-hematita	anhidrita-opaco	halita-hematita-opaco	halita-3 transparentes	2 transparentes-opaco	2 transparentes-2 opacos	hematita-anhidrita-2 opacos	halita- opacos	4 transparentes	halita-hematita-opaco	halita-hematita-opaco	3 transparentes	opaco indif-halita	halita-opaco indif	halita-calcopirita-opaco indif	opaco indif	ta; s: fase sólida; sn: múltiples fas
		Proporc.	0,85-0,1-0,05	0,85-0,1-0,05	0,5-0,3-0,2	0,5-0,3-0,2	0, 8-0, 1-(0, 1)	0,6-0,2-0,2	0, 7 - 0, 2 - (0, 1)	0,4-0,3-0,4	0,6-0,2-0,2	0,5-0,3-0,2	0,7-0,2-0,1	0, 7 - 0, 2 - (0, 1)	0,5-0,4-(0,1)	0,7-0,3-tr	0,7-0,3-tr	0,5-0,3-(0,2)	0, 6-0, 2-(0, 2)	0,5-0,3-0,2	0, 8-0, 1-0, 1	0,5-0,3-0,2	0,75-0,2-0,05	0,5-0,4-0,1	0,4-0,3-0,3-tr,	0,4-0,3-0,2-0,1	0,6-0,4-tr,	: opaco; sil: silvi
			L+ha+V	L+Sn+V	L+ha+V+sn	L+ha+V+sn	L+V+Sn	L+V+Sn	L+V+ha+hem	Sn+V+L	L+V+Sn	L+ha+V+sn	L+V+Sn	+V+ha+o+hem	L+V+Sn	L+V+Sn	L+V+Sn	L+V+Sn	L+V+Sn	L+V+Sn	L+V+Sn	L+ha+V+sn	L+V+Sn	V+L+o+Ha	L+V+Ha+o	L+V+2o+Ha	L+V+0	hem: hematita; o
		Subtipo	B ₅₋₄₀ sn (2a)	$B_{5-40}Sn_{(2a)}$	B ₅₋₄₀ Sn (2a)	B ₅₋₄₀ Sn (2a)	$B_{5-40}Sn_{(2a)}$	B ₅₋₄₀ Sn (2a)	B ₅₋₄₀ Sn (2a)	B ₅₋₄₀ Sn (2a)	B ₅₋₄₀ Sn (2a)	B ₅₋₄₀ Sn (2a)	B ₅₋₄₀ Sn (2a)	B ₅₋₄₀ Sn (2a) I	B ₅₋₄₀ Sn (2a)	B ₅₋₄₀ Sn (2a)	$B_{5-40}sn_{(2a)}$	B ₅₋₄₀ Sn (2a)	B ₅₋₄₀ Sn (2a)	B ₅₋₄₀ Sn (2a)	B ₅₋₄₀ Sn (2a)	B ₅₋₄₀ Sn (2a)	$B_{5-40}Sn_{(2a)}$	$B_{5-40}Sn_{(2a)}$	B ₅₋₄₀ Sn (2a)	B ₅₋₄₀ Sn (2a)	B ₅₋₄₀ Sn (2a)	r; ha: halita;
		1 Tipo	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	; V, vapo
		a Origen	0 P	0 P	0 P	0 b	0 P	0 P	0 b	2 P	0 P	0 b	0 P	0 P	0 P	0 b	0 P	0 P	0 P	0 P	0 P	0 P	P P	2 P	2 P	2 P	2 P	. líquido
		Muestra	A-43-73	A-43-73	A-43-73	A-43-73	A-43-73	A-43-73	A-43-73	A-57-67.	A-43-73	A-43-73	A-43-73	A-43-73	A-43-73	A-43-73	A-43-73	A-43-73	A-43-73	A-43-73	A-43-73	A-43-73	A-46-26	A-57-67.	A-57-67.	A-57-67.	A-57-67.	reviaturas: L
		å	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	4	4	43	4	45	46	4	48	49	50	Ab

				433			10μ	regular	0,9-0,1	V+L	$B_{80-90(3)}$	Π	Р	A-57-551	×
Brown & Lamb (FLINCOR	H2O-NaCl	6,2		423	3,8		10μ	regular	0, 8-0, 2	V+L	${ m B}_{80-90(3)}$	Π	Р	A-57-551	5
Brown & Lamb (FLINCOR	H2O-NaCl	6,3		424	4		10μ	regular	0, 8-0, 2	$^{+\Gamma}$	$B_{80-90(3)}$	Π	Р	A-57-551	9
				406			10μ	regular	0, 8-0, 2	$\Lambda + \Gamma$	$B_{80-90(3)}$	Π	Р	A-57-551	5
Brown & Lamb (FLINCOR	H2O-NaCl	4,3	220		-2,7	-62	10μ	regular	0, 8-0, 2	L+V	${ m B}_{20~(3)}$	I	Р	A-55-635	4
Brown & Lamb (FLINCOR	H2O-NaCl	9,5	264		-6,3	48	10μ	irregular	0, 8-0, 2	L^+V	${ m B}_{20~(3)}$	Ι	Р	A-55-635	ŝ
		eq, NaCl	(°C)	(°C)			tamaño	Forma	Proporc,		Subtipo	Tipo	Origen	Muestra	°
Fórmula cálculo de salinida	Sistema	Salinidad %	ThL	ThV	Tm	Te									
					amiento	Congel									

5	
۲	
	5
	٢
έ.	_
-	
	-
1	4
1	С
•	-
r	
۲	
1	
1	U
	ñ
	1
	÷
	٢
•	2
	1
	-
	-
-	-
	c
	2
, i	-
۲	
	÷
C	٣
	C
	ĉ
	-
• :	
-	
1	
	2
	7
-	
-	-
•	Ξ
	c
J,	ñ
Ľ	4
~	5
۲	-
1	υ
	7
-	
. 1	5
1	-
-	
Ē	T
ŗ	I
Ē	I
Ē	I
Ē	I
F	L NA
-	
E	
T	
T 1	
T 1 1	
1 - T 1	
1. T 1	
- T	
- 1 - 1 - 1	3 OP INCLUSION PC FIL
- 4- 1 - 1 - 1	
	VIPTOTETMOMETTS OF INCLUSIONES FIL
	VIICTOTETTIONETTIA DE INCLUSIONES FIL
	VIICTOTETTIONETTIS OF INCUISIONES FIL
1	

$\begin{array}{llllllllllllllllllllllllllllllllllll$	434	435	441	391	449	359	381	412	418	420	ttita; o: opaco; sil: silvita; s: fase sólida; sn: múltiples fases sólidas; P: primarias; S: secundarias
$\begin{array}{llllllllllllllllllllllllllllllllllll$	10µ	10μ	10μ	10μ	10μ	10μ	10μ	10μ	10μ	10μ	alita; hem: hem
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	regular	regular	regular	regular	regular	regular	regular	regular	regular	regular	/apor; ha: ha
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0,9-0,1	0,9-0,1	0,9-0,1	0,9-0,1	0,9-0,1	0,9-0,1	0,7-0,3	0,9-0,1	0,9-0,1	0, 6-0, 4	uido; V, v
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V+L	$\Lambda + \Gamma$	$\Lambda + \Gamma$	$\Lambda^+\Gamma$	$\Lambda^+\Gamma$	$^{\Lambda+L}$	ta; L, líq				
9 A-57-551 P II 0 A-57-551 P II 1 A-57-551 P II 2 A-57-551 P II 3 A-57-551 P II 4 A-57-551 P II 5 A-57-551 P II 6 A-57-551 P II 7 A-57-551 P II 8 A-57-551 P II 7 A-57-551 P II 8 A-57-551 P II reviaturas: anh: anhidrita; cp P II	$B_{80-90(3)}$	${ m B}_{80-90(3)}$	$B_{80-90(3)}$	${ m B}_{80-90(3)}$	$B_{80-90(3)}$	$B_{80-90(3)}$	y: calcopiri				
 A-57-551 P 	Π	Π	Π	Π	Π	Π	Π	Π	Π	Π	drita; cp
 P. A-57-551 O. A-57-551 I. A-57-551 Z. A-57-551 S. A-57-551 S. A-57-551 6. A-57-551 7. A-57-551 8. A-57-551 wreviaturas: anl wreviaturas: anl 	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	1: anhi
~	9 A-57-551	10 A-57-551	11 A-57-551	12 A-57-551	13 A-57-551	14 A-57-551	15 A-57-551	16 A-57-551	17 A-57-551	18 A-57-551	breviaturas: an

I

 \sim

CongetamentoTamañoTeTuTu2° TmS haSalinidadSisten20µanhidrita -46 380 $eq.$ NaCl $H20-Na$ 10µhalita -62 380 $H20-Na$ $H20-Na$ ar10µhalita -62 380 $H20-Na$ ar10µopaco 264 380 $H20-Na$ ar10µopaco 264 373 $38,9$ $H20-Na$ ar10µopaco 264 733 $31,4$ $H20-Na$ ar20µhalita-anhidrita 237 190 $31,4$ $H20-Na$ r20µhalita-sulfato?-otra fase sol? 63 381 300 $36,7$ $H20-Na$ r20µhalita-sulfato?-otra fase sol? 63 381 300 $36,7$ $H20-Na$ r20µhalita-sulfato?-otra fase sol? 63 381 300 $45,3$ $H20-Na$ r10µhalita-sulfatoro 292 7 $44,3$ $H20-Na$ r10µhalita-opacos 202 269 370 $44,3$ $H20-Na$ r10µhalita-otro transp 260 $36,7$ $H20-Na$ $100-Na$ r10µhalita-otro transp 269 370 $44,3$ $H20-Na$ r10µhalita-otro transp 260 370 $44,3$ $H20-Na$
Te Th. 2° TmS ha Salinidad Sistem tatmatio fises hijas -60 66 86 $NaCl 00\mu anhidrita -62 80 46 380 120-Nacl 10\mu halita -55 -46 380 120-Nacl 10\mu halita -55 -62 473 389 120-Na 10\mu opaco -55 264 373 38,9 120-Na 10\mu opaco -46 380 473 31,4 120-Na 10\mu halita-anhidrita 473 313 38,9 120-Na 10\mu halita-sulfato?-otra fase sol? -63 381 300 31,4 120-Na 10\mu halita-sulfato?-otra fase sol? -63 381 300 36,7 120-Na 10\mu halita-sulfato? 53 38 45,3 120-Na 10\mu halita-sulfato? $
tamaño fases hijas (°C) (°C) 96 el. NaCl 20µ anhidrita -46 380 $H20-Na$ 10µ halita -62 380 $H20-Na$ ar 10µ halita -55 $120-Na$ ar 10µ opaco 264 $120-Na$ ar 10µ opaco 264 $31,4$ $H20-Na$ ar 10µ opaco 264 $31,4$ $H20-Na$ ar 20µ halita-anhidrita 277 190 $31,4$ $H20-Na$ r 20µ halita-sulfato?-otra fase sol? 63 $38,7$ $H20-Na$ r 20µ halita-sulfato? 237 190 $31,4$ $H20-Na$ r 20µ halita-sulfato? 53 38 $45,3$ $H20-Na$ r 20µ halita-cytransp-opaco 293 380 $45,3$ $H20-Na$ r 10µ halita-cortransp-opaco 293 <
20µ anhidrita -46 380 H20-Na 10µ halita -62 90 H20-Na ar 10µ halita -55 10 H20-Na ar 10µ opaco 264 90 13,9 H20-Na ar 10µ opaco 264 31,3 38,9 H20-Na ar 10µ opaco 473 31,3 38,9 H20-Na ar 20µ halita-anhidrita 237 190 31,4 H20-Na r 20µ halita-sulfato?-otra fase sol? -63 381 300 45,3 H20-Na r 10µ halita-sulvita-calcoprita 353 286 36,7 H20-Na r 10µ halita-sulvita-calcoprita 353 286 36,7 H20-Na r 20µ halita-cuto transp-opaco 203 7 20-Na 100-Na r 10µ halita-cuto transp-opaco 293 36,7 44,3
10µ halita -62 ar 10µ halita -55 ar 10µ opaco 264 ar 10µ opaco 264 ar 10µ opaco 406 ar 10µ opaco 406 ar 20µ halita-anhidria 473 313 38,9 H20-Na a 20µ halita-anhidria 237 190 31,4 H20-Na r 20µ halita-sulfato?-otra fase sol? -63 381 300 36,7 H20-Na r 10µ halita-sulvia-calcopirita 353 286 36,7 H20-Na r 10µ halita-sulvia-calcopirita 353 286 36,7 H20-Na r 20µ halita-sulvia-calcopirita 353 286 36,7 H20-Na r 10µ halita-cytransp-opaco 292 ? 45,3 H20-Na r 10µ halita-cytransp-opaco 293
10µ halita -55 ar 10µ opaco 264 ar 10µ opaco 406 ar 10µ opaco 406 ar 20µ halita-anhidrita 473 313 38,9 H2O-Na ar 20µ halita-anhidrita 237 190 31,4 H2O-Na r 20µ halita-sultato?-otra fase sol? -63 381 300 36,7 H2O-Na r 20µ halita-sulvia-calcoprita 353 286 36,7 H2O-Na r 10µ halita-sulvia-calcoprita 353 286 36,7 H2O-Na r 10µ halita-sulvia-calcoprita 353 286 36,7 H2O-Na r 20µ halita-cp-transp-opaco 203 7 300 44,3 H2O-Na r 10µ halita-cp-transp-opaco 203 370 44,3 H2O-Na r 10µ halita-ctrotransp 269
ar 10µ opaco 264 ar 10µ opaco 406 ar 10µ opaco 406 ar 20µ halita-anhidrita 473 313 38,9 H2O-Na ar 20µ halita-anhidrita 473 313 38,9 H2O-Na ar 20µ halita-sulfato?-otra fase sol? -63 381 300 31,4 H2O-Na r 20µ halita-sulfato?-otra fase sol? -63 381 300 36,7 H2O-Na r 10µ halita-sulvita-calcoprita 353 286 36,7 H2O-Na r 10µ halita-opacos 292 ? 1300 45,3 H2O-Na r 10µ halita-opaco 293 380 45,3 H2O-Na r 10µ halita-opaco 269 370 44,3 H2O-Na r 10µ halita-opaco 269 370 44,3 H2O-Na
ar 10µ opaco 406 20µ halita-anhidrita 473 313 38,9 H2O-Na 20µ hematita-anhidrita 473 313 38,9 H2O-Na 7 20µ hematita-anhidrita 237 190 31,4 H2O-Na 7 20µ halita-sulfato?-otra fase sol? -63 381 300 36,7 H2O-Na 10µ halita-sulvita-calcopirita 353 286 36,7 H2O-Na 10µ halita-opacos 353 286 36,7 H2O-Na 10µ halita-opacos 292 ? 1300 44,5 H2O-Na 20µ halita-opaco 292 ? 243 380 45,3 H2O-Na 10µ halita-opaco 243 380 24,3 H2O-Na 10µ halita-opaco 269 370 44,3 H2O-Na 10µ halita-otro transp 50 380 27.7 H2O-Na
20µ halita-anhidrita 473 313 38,9 H2O-Na r 20µ hematita-anhidrita 237 190 31,4 H2O-Na r 20µ halita-sulfato?-otra fase sol? -63 381 300 31,4 H2O-Na r 20µ halita-sulfato?-otra fase sol? -63 381 300 36,7 H2O-Na r 10µ halita-sulvita-calcopirita 353 286 36,7 H2O-Na r 10µ halita-sulvita-calcopirita 353 286 36,7 H2O-Na r 10µ halita-opaco 292 ? 45,3 H2O-Na r 20µ halita-opaco 292 ? 45,3 H2O-Na r 10µ halita-opaco 243 380 45,3 H2O-Na r 10µ halita-opaco 243 380 44,3 H2O-Na r 10µ halita-opaco 269 370 44,3 H2O-Na
20µ hematita-halita 237 190 31,4 H2O-Na r 20µ halita-sulfato?-otra fase sol? -63 381 300 31,4 H2O-Na 10µ halita-sulfato?-otra fase sol? -63 381 300 36,7 H2O-Na 10µ halita-sulvita-calcopirita 353 286 36,7 H2O-Na 10µ halita-sulvita-calcopirita 353 286 36,7 H2O-Na 10µ halita-sulvita-calcopirita 353 286 36,7 H2O-Na 20µ halita-opaco 292 ? 44,3 H2O-Na 20µ halita-opaco 243 380 45,3 H2O-Na 20µ halita-opaco 243 380 44,3 H2O-Na 20µ halita-otro transp 269 370 44,3 H2O-Na 20µ halita-otro transp 50 100 380 270 H2O-Na
r 20µ halita-sulfato?-otra fase sol? -63 381 10µ halita-sulfato?-otra fase sol? -63 381 200 36,7 H2O-Na 201µ halita-sulvita-calcopirita 353 286 36,7 H2O-Na 201µ halita-opaco 292 ? 44,3 H2O-Na 201µ halita-opaco 243 380 45,3 H2O-Na 201µ halita-opaco 269 370 44,3 H2O-Na 201µ halita-otransp 50 10.0 380 27.0 H3O-Na
10µ halita-hematita-anhidrita-opacos 300 10µ halita-silvita-calcopirita 353 286 36,7 H20-Na 10µ halita-silvita-calcopirita 353 286 36,7 H20-Na 10µ halita-silvita-calcopirita 353 286 36,7 H20-Na 20µ halita-opaco 292 ? 45,3 H20-Na 10µ halita-opaco 243 380 45,3 H20-Na 10µ halita-opaco 269 370 44,3 H20-Na 20µ halita-otro transp 50 10.0 264 70 70.0
10µ halita-silvita-calcopirita 353 286 36,7 H2O-Na 10µ halita-opaco 292 ? H2O-Na 20µ halita-opaco 243 380 45,3 H2O-Na 10µ halita-opaco 243 380 45,3 H2O-Na 10µ halita-opaco 243 370 44,3 H2O-Na 10µ halita-otro transp 269 370 44,3 H2O-Na 20µ halita-otro transp 50 10.0 264 77 H2O-Na
10µ halita-opaco 292 ? 20µ halita-opaco 243 380 45,3 H20-Na 10µ 10µ 269 370 44,3 H20-Na 20µ halita-oproto transp 269 370 44,3 H20-Na 20µ halita-otro transp 264 27.7 H20-Na
20μ halita-cpy-transp-opaco 243 380 45,3 H2O-Na 10μ 269 370 44,3 H2O-Na 20μ halita-otro transp 264 27.0 H3O-Na 20μ halita-otro transp 264 27.7 H2O-Na
· 10µ 269 370 44,3 H2O-Na · 20µ halita-otro transp 264 277 H2O-Na • 10.0 transmisse 50 10.0 380 27.7 H2O-Na
· 20μ halita-otro transp 264 - 10. transcorentes -50 10.0 380 -27.2 H2O-Na
r 10. transmartas -50 10.0 280 -27.2 H2O-Na
1 10µ (1411) 141, 1120-14
· 10μ opacos -48 20 380 22,3 H2O-Na
r 10μ transparentes -62 19 380 22,2 H2O-Na

nes Fluidas -Venillas tipo 3 - Inclusiones Tipo III v IV de Inclusi Mic 4

	_			_	_	_														
	inidad			COR	COR	COR														
	de sal			FLIN	FLIN	FLIN														
	culo (amb (amb (amb (
	ıla cál			ı&L	ı&L	ι&L														
	fórmu			Browr	Browr	Browr														
	H			5	5	5														
	istem			O-Na	O-Na	O-Na														
	% S			H2	H2	H2														
	dad 9	NaCl		,2 ,2	,2 ,2	1,7														
	Salini	eq.		(r)	(n)	1														
	ſmS	°C)																		
iento	1 2°]	ha (
entam	l° Tn	(°C)																		
Cale	ThL	°C)		255	254	199	198	390	261				270	270	269				400	~400
	hV	°C)																		Λ
entc	m T			•	~	~														
gelami	Ē			(1	(1	æ														
Cong	Te																			
		año	μ(ц(μ(ц	n,	ц	μ(μ(μ(ή(μ(
		tam	1(4	3(4	5	3(5	3(й	й	-	-	-	Х		1(3(й
		ma	ular	oide	ular	ular	ular	ular	ular	gular	ular	ular	ngular	ngular	ngular	ngular	ngular	gular	gular	ular
		For	reg	000	reg	reg	reg	reg	reg	irreg	reg	reg	rectai	rectai	rectai	rectai	rectai	irreg	trian	reg
		OTC.	0,5	0,15	0,15	0,3	0,05	0,4	0,2	0,35	0,1	0,2	0,4	0,4	0,4	0,2	0,2	0,4	0,1	0,4
		Prop	0,5-	0,85-	0,85-	0,7-	0,95-	0,6-	0,8-	0,65-	0,9-	0,8-	0,6-	0,6-	0,6-	0,8-	0,8-	0,6-	0,9-	0,6-
			λ_{+}	$^{+}$	2	λ +	2	$\sum_{i=1}^{n}$	2	2	2	$^{+}$	$^{+}$	Λ^+	Λ^+	$^{>+}$				
			Γ	Γ	Г	Г	Г	Г	Г	Г	Г	Γ	Г	Г	Г	Г	Г	Γ	Γ	Г
		ubtipo	1-20 (5c)	1-20 (5c)	1-20 (5c)	-20 (5c)	-20 (5c)	-20 (5c)	-20 (5c)	-20 (5c)	1-20 (5c)	1-20 (5c)	1-20 (5c)	-20 (5c)	1-20 (5c)	1-20 (5c)	1-20 (5c)	-20 (5c)	-20 (5c)	-20 (5c)
		S St	\mathbf{B}_{10}	B_{10}	B ₁₀															
		I Tip	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι
		ineral	anh	cz	cz															
		n																		
		Orige	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Ь	Ь	Р	Р	Р
		ra	271	-271	.271	.271	.271	.271	.271	.271	.271	.271	.271	·271	.271	.271	.271	271	.271	.271
		10-																		. ±.
		Muest	A-46-	A-46-	A-46	A-46	A-46													

Apéndice 7. Microtermometría de Inclusiones Fluidas -Venillas tipo 5c - Inclusiones Tipo I

ntc Calentamiento 1 ThV ThL 1° Tm 2° TmS Salinidad Sistema Fórmula cálculo de salinidad (°C) (°C) (°C) ha (°C) % eq.	NaCl							385 2,8 H2O-NaCl Brown & Lamb (FLINCOR)	2,9 H2O-NaCl Brown & Lamb (FLINCOR)		237		400		
Congelamientc Cal Te Tm ThV Tr (°C) (°								1,6 385	1,8 388	2	23		1 40		
	fases hijas									opaco	opaco	opaco	halita	halita-opaco	halita-silvita?-opaco
	tamaño	15μ	20μ	10μ	10μ	10μ	5μ	10μ	10μ	20µ	10μ	10μ	20µ	20µ	10μ
	Forma	regular	regular	rectangular	regular	rectangular	rectangular	regular	rectangular	ovoide	regular	regular	irregular	regular	regular
	Proporc.	0,9-0,1	0,9-0,1	0, 6-0, 4	0,7-0,3	0,9-0,1	0,9-0,1	0, 6-0, 4	0,9-0,1	0,8-0,2-Tr,	0,9-0,1-tr,	0, 7 - 0, 2 - 0, 1	0,9-0,1-tr,	0,9-0,05-0,05	
		V+L	V+L	V+L	V+L	V+L	V+L	V+L	V+L	L^{+V+op}	L^{+V+op}	L+V+op	L+V+Ha	L+ha-op+V	L+V+ha+sil+op
	Subtipo	$B_{80-90 (5c)}$	$B_{80-90(5c)}$	$B_{80-90(5c)}$	$B_{80-90 (5c)}$	B ₈₀₋₉₀ (5c)	B ₈₀₋₉₀ (5c)	B _{80-90 (5c)}	$B_{80-90(5c)}$	B_{10} op (5c)	$\mathrm{B}_{10}\mathrm{op}_{(5\mathrm{c})}$	$B_{10}op_{(5c)}$	${\rm B}_{10-20}{\rm H}_{(5c)}$		
	Tipo	Π	Π	Π	Π	Π	Π	Π	Π	Π	Π	III	III	N	N
	Mineral	anh	anh	anh	anh	anh	anh	cz	cz	anh	anh	anh	cz	cz	cz
	Origen	Ч	Р	Р	Р	Р	Ч	Ь	Р	Ч	Р	Р	Р	Р	Р
	Muestra	A-46-271	A-46-271	A-46-271	: A-46-271	A-46-271	A-46-271	A-46-271	A-46-271	A-46-271	0 A-46-271	1 A-46-271	2 A-46-271	3 A-46-271	4 A-46-271
	å	1	2	Э	4	5	9	2	8	6	Ξ		1,	Ξ	14

Apéndice 8. Microtermometría de Inclusiones Fluidas - Venillas tipo 5c - Inclusiones Tipo II, III y IV

Sthring Format Forma Forma<							Congel ²	amiento		ŀ		E		į	-
ipo Perpore Formatio (°C) (°C) (°C) (°C) Nach $1 + V$ $0.55-0.05$ regular 10μ -6 270 9.1 H2O-NaCl Brown & Lamb (FLINCOR) $1 + V$ $0.8-0.2$ ovoide 10μ 368 368 367 $1 + V$ $0.8-0.2$ ovoide 10μ 367 367 13.9 H2O-NaCl Brown & Lamb (FLINCOR) $0 + 1 0.9-0.1$ ovoide 20μ -10 390 $3,2$ H2O-NaCl Brown & Lamb (FLINCOR) $0 + 1 0.9-0.1$ ovoide 20μ -63 -2 440 $3,2$ H2O-NaCl Brown & Lamb (FLINCOR) $0 + 1 0.9-0.1$ ovoide 20μ -63 -2 440 $3,2$ H2O-NaCl Brown & Lamb (FLINCOR) $0 + 1 0.9-0.1$ regular 10μ -30 $3,2$ H2O-NaCl Brown & Lamb (FLINCOR) $0 + 1 0.9-0.1$ regular 10μ							Te	Tm	ThV	ThL	l° Tm	2° TmS	Salinidad %	Sistema	Fórmula cálculo de salinidad
3.0 L+V 0.95-0.05 regular 10µ -6 270 9,1 H20-NaCl Brown & Lamb (FLINCOR) 3.0 L+V 0,8-0.2 ovoide 10µ 367 368 13,9 H20-NaCl Brown & Lamb (FLINCOR) 3.0 L+V 0,8-0.2 ovoide 10µ -10 367 367 3.0 V+L 0,8-0.1 ovoide 20µ -30 13,9 H20-NaCl Brown & Lamb (FLINCOR) 3.0 V+L 0,9-0,1 ovoide 20µ -62 -2 440 3,5 H20-NaCl Brown & Lamb (FLINCOR) 9.00 V+L 0,9-0,1 regular 10µ -62 -2 440 3,5 H20-NaCl Brown & Lamb (FLINCOR) 9.00 V+L 0,9-0,1 regular 10µ -62 -2 440 3,5 H20-NaCl Brown & Lamb (FLINCOR) 9.00 V+L 0,9-0,1 regular 10µ -63 -2 440 -7 -7 9	Sul	btij	od	Proporc.	Forma	tamaño			(°C)	(°C)	(°C)	ha (°C)	eq. NaCl		
30 L+V 0,8-0,2 ovoide 10µ 367 367 30 L+V 0,8-0,2 regular 10µ -10 367 367 30 V+L 0,8-0,2 regular 10µ -10 367 367 30 V+L 0,8-0,2 regular 10µ -10 390 13,9 H2O-NaCl Brown & Lamb (FLINCOR) 800 V+L 0,9-0,1 regular 20µ -63 -2 440 3,5 H2O-NaCl Brown & Lamb (FLINCOR) 800 V+L 0,9-0,1 regular 10µ -62 -2 440 3,5 H2O-NaCl Brown & Lamb (FLINCOR) 800 V+L 0,9-0,1 regular 10µ -62 -2 440 3,5 H2O-NaCl Brown & Lamb (FLINCOR) 800 V+L 0,9-0,1 regular 10µ -62 -2 410 3,5 H2O-NaCl Brown & Lamb (FLINCOR) 800 V+L 0,9-0,1 regular <td>I</td> <td>3_{20}</td> <td>L+V</td> <td>0,95-0,05</td> <td>regular</td> <td>10µ</td> <td></td> <td>-9</td> <td></td> <td>270</td> <td></td> <td></td> <td>9,1</td> <td>H2O-NaCl</td> <td>Brown & Lamb (FLINCOR)</td>	I	3_{20}	L+V	0,95-0,05	regular	10µ		-9		270			9,1	H2O-NaCl	Brown & Lamb (FLINCOR)
B_0 L+V $0.8-0.2$ rovide 10μ -10 367 B_0 L+V $0.8-0.2$ regular 10μ -10 300 13.9 H2O-NaCl< Brown & Lamb (FLINCOR) $8_{9.90}$ V+L $0.9-0,1$ ovoide 20μ -53 -2 440 $3,2$ H2O-NaCl< Brown & Lamb (FLINCOR) $8_{9.90}$ V+L $0.9-0,1$ regular 20μ -63 -2 440 $3,2$ H2O-NaCl Brown & Lamb (FLINCOR) $8_{9.90}$ V+L $0.9-0,1$ regular 10μ -62 -2 440 $3,5$ H2O-NaCl Brown & Lamb (FLINCOR) $8_{9.90}$ V+L $0.9-0,1$ regular 10μ -300 $3,5$ H2O-NaCl Brown & Lamb (FLINCOR) $8_{9.90}$ V+L $0.9-0,1$ regular 10μ -300 $3,5$ H2O-NaCl Brown & Lamb (FLINCOR) $8_{9.90}$ V+L $0.9-0,1$ regular 10μ -30 3.70 <td></td> <td>B_{20}</td> <td>L+V</td> <td>0, 8-0, 2</td> <td>ovoide</td> <td>10µ</td> <td></td> <td></td> <td></td> <td>368</td> <td></td> <td></td> <td></td> <td></td> <td></td>		B_{20}	L+V	0, 8-0, 2	ovoide	10µ				368					
B_0 L+V 0,8-0,2 regular 10µ -10 390 13,9 H2O-NaCl Brown & Lamb (FLINCOR) 36.90 V+L 0,9-0,1 ovoide 20µ -10 390 13,9 H2O-NaCl Brown & Lamb (FLINCOR) 36.90 V+L 0,9-0,1 ovoide 20µ -63 -2 440 3,2 H2O-NaCl Brown & Lamb (FLINCOR) 36.90 V+L 0,9-0,1 regular 20µ -62 -2 410 3,5 H2O-NaCl Brown & Lamb (FLINCOR) 36.90 V+L 0,9-0,1 regular 10µ -62 -2 410 3,5 H2O-NaCl Brown & Lamb (FLINCOR) 36.90 V+L 0,9-0,1 regular 10µ 300 3,5 H2O-NaCl Brown & Lamb (FLINCOR) 36.90 V+L 0,9-0,1 regular 10µ 300 3,5 H2O-NaCl Brown & Lamb (FLINCOR) 36.90 V+L 0,9-0,1 regular 10µ 30 VL 0,9-0,1 <td></td> <td>\mathbf{B}_{20}</td> <td>L+V</td> <td>0, 8-0, 2</td> <td>ovoide</td> <td>10µ</td> <td></td> <td></td> <td></td> <td>367</td> <td></td> <td></td> <td></td> <td></td> <td></td>		\mathbf{B}_{20}	L+V	0, 8-0, 2	ovoide	10µ				367					
B ₈₀₀₀ V+L 0,9-0,1 ovoide 20µ B ₈₀₀₀ V+L 0,95-0,05 ovoide 20µ B ₈₀₀₀ V+L 0,5-0,5 ovoide 20µ B ₈₀₀₀ V+L 0,5-0,5 ovoide 20µ B ₈₀₀₀ V+L 0,5-0,1 regular 20µ B ₈₀₀₀ V+L 0,9-0,1 regular 10µ B ₈₀₀₀ V+L 0,9-0,1 regular 10µ <t< td=""><td></td><td>\mathbf{B}_{20}</td><td>L+V</td><td>0, 8-0, 2</td><td>regular</td><td>10µ</td><td></td><td>-10</td><td></td><td>390</td><td></td><td></td><td>13,9</td><td>H2O-NaCl</td><td>Brown & Lamb (FLINCOR)</td></t<>		\mathbf{B}_{20}	L+V	0, 8-0, 2	regular	10µ		-10		390			13,9	H2O-NaCl	Brown & Lamb (FLINCOR)
		B_{80-9_1}	0 V+L	0,9-0,1	ovoide	20µ									
		${\rm B}_{80-90}$	0 V+L	0,95-0,05	ovoide	20µ			430						
B ₈₀₋₉₀ V+L 0,9-0,1 regular 20µ -62 -2 410 3,5 H2O-NaCl< Brown & Lamb (FLINCOR) B ₈₀₋₉₀ V+L 0,6-0,4 regular 10µ 430 3,5 H2O-NaCl Brown & Lamb (FLINCOR) B ₈₀₋₉₀ V+L 0,9-0,1 regular 10µ 390 B ₈₀₋₉₀ V+L 0,9-0,1 regular 10µ 370 B ₈₀₋₉₀ V+L 0,9-0,1 ovoide 20µ 370 B ₈₀₋₉₀ V+L 0,9-0,1 ovoide 20µ 395 B ₈₀₋₉₀ V+L 0,9-0,1 regular 10µ 395 B ₈₀₋₉₀ V+L 0,9-0,1 regular 10µ 395 B ₈₀₋₉₀ V+L 0,9-0,1 regular 10µ 390 B ₈₀₋₉₀ V+L 0,9-0,1 regular 10µ 390 B ₈₀₋₉₀ V+L 0,9-0,1 regular 10µ 390 B ₈₀₋₉₀ V+L 0,9-0,1 <td< td=""><td></td><td>${\rm B}_{80-9_{\rm i}}$</td><td>0 V+L</td><td>0,5-0,5</td><td>ovoide</td><td>20µ</td><td>-63</td><td>-2</td><td>440</td><td></td><td></td><td></td><td>3,2</td><td>H2O-NaCl</td><td>Brown & Lamb (FLINCOR)</td></td<>		${\rm B}_{80-9_{\rm i}}$	0 V+L	0,5-0,5	ovoide	20µ	-63	-2	440				3,2	H2O-NaCl	Brown & Lamb (FLINCOR)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		${\rm B}_{80-90}$	0 V+L	0,9-0,1	regular	20µ	-62	-2	410				3,5	H2O-NaCl	Brown & Lamb (FLINCOR)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		${\rm B}_{80-9_{1}}$	0 V+L	0, 6-0, 4	regular	10µ			430						
B ₈₀₋₉₀ V+L 0,9-0,1 ovoide 20µ 370 B ₈₀₋₉₀ V+L 0,95-0,05 ovoide 20µ 395 B ₈₀₋₉₀ V+L 0,95-0,05 regular 10µ 395 B ₈₀₋₉₀ V+L 0,9-0,1 ovoide 20µ 400 B ₈₀₋₉₀ V+L 0,9-0,1 regular 10µ 390 B ₈₀₋₉₀ V+L 0,9-0,1 regular 10µ 390 B ₈₀₋₉₀ V+L 0,9-0,1 regular 10µ 390		${\rm B_{80-91}}$	0 V+L	0,9-0,1	regular	10µ			390						
B ₈₀₋₉₀ V+L 0.95-0.05 ovoide 20µ 395 B ₈₀₋₉₀ V+L 0.95-0.05 regular 10µ 395 B ₈₀₋₉₀ V+L 0.9-0.1 ovoide 20µ 400 B ₈₀₋₉₀ V+L 0.9-0.1 regular 10µ 390 B ₈₀₋₉₀ V+L 0.9-0.1 regular 10µ 390 B ₈₀₋₉₀ V+L 0.9-0.1 regular 10µ 390		${\rm B}_{80-9_{1}}$	0 V+L	0,9-0,1	ovoide	20µ			370						
B ₈₀₋₉₀ V+L 0.95-0.05 regular 10µ 395 B ₈₀₋₉₀ V+L 0.9-0.1 ovoide 20µ 400 B ₈₀₋₉₀ V+L 0.9-0.1 regular 10µ 390 B ₈₀₋₉₀ V+L 0.9-0.1 regular 10µ 390		${\rm B}_{80-91}$	0 V+L	0,95-0,05	ovoide	20µ			395						
$ \begin{array}{ccccccc} B_{80-90} & V+L & 0,9-0,1 & ovoide & 20 \mu & 400 \\ B_{80-90} & V+L & 0,9-0,1 & regular & 10 \mu & 390 \\ B_{80-90} & V+L & 0,9-0,1 & regular & 10 \mu & 390 \\ \end{array} $		${\rm B}_{80-9_{1}}$	0 V+L	0,95-0,05	regular	10µ			395						
$\begin{array}{llllllllllllllllllllllllllllllllllll$		${\rm B}_{80-9_1}$	0 V+L	0,9-0,1	ovoide	20µ			400						
B ₈₀₋₉₀ V+L 0,9-0,1 regular 10μ 390		${\rm B_{80-9_{1}}}$	0 V+L	0,9-0,1	regular	10µ			390						
		${\rm B}_{80-9(}$	0 V+L	0,9-0,1	regular	10µ			390						

Apéndice 9. Microtermometría de Inclusiones Fluidas - Venillas tipo 6a - Inclusiones Tipo I y II

>	
yI	
Ξ	C.
ipc	
es]	
ion	
slus	
Inc	
5a -	
od	
is ti	
illa	
Ven	
'' as	
uid	
E	
ones	
usia	
ncl	
de I	
ría .	
net	
iom	
oter	
licre	
Σ	
÷ 10	
dice	
pén	
A	

									Conge	lamie			Ca	lentamie	nto			
									Te	Tm	ThV	ThL T	desap 1	° Tm	2° TmS S	alinidad %	Sistema	Fórmula cálculo de
°N	Muestra	Origen	Tipo		Proporc.	Forma	tamaño	fases hijas			(°C)	(°C)	bur.	(°C)	ha (°C)	eq. NaCl		salinidad
1	A-53-111	Ь	Ξ	L+V+0	0,8-0,2-tr	ovoide	10µ	opaco				270						
7	A-53-111	Р	Π	L+V+t	0,5-0,4-0,1	regular	20µ	transparente	-49	-9		280				9,1	H2O-NaCl Bro	own & Lamb (FLINCOR)
Э	A-53-111	Ь	Π	$L+V+_0$	0,8-0,2-tr	regular	10μ	opaco										
4	A-53-111	Ь	Π	L+V+hem	0,7-0,2-0,1	irregular	10μ	hematita										
5	A-53-111	Р	Π	V+L+t	0, 6-0, 3-0, 1	regular	10μ	transparente										
9	A-53-111	Ь	Π	L+V+ha	0,6-0,2-0,2	regular	10μ	halita					250		318	39,8	H2O-NaCl Boo	dnard and Vityk 1994
7	A-53-111	Р	Ш	L+ha+V	0,6-0,3-0,1	regular	10μ	halita					240		395	46,4	H2O-NaCl Boo	dnard and Vityk 1994
8	A-53-111	Ь	Ш	L+V+ha	0, 8-0, 1-0, 1	regular	10μ	halita					280		318	39,8	H2O-NaCl Boo	dnard and Vityk 1994
6	A-53-111	Ь	Ш	L+V+ha	0, 8-0, 1-0, 1	regular	10μ	halita				367						
10	A-53-111	Р	Ш	L+V+ha	0, 8-0, 1-0, 1	regular	10μ	halita				368						
11	A-53-111	Р	VI	L+V+sn	0,8-0,2-tr	ovoide	10μ	opacos				270						
12	A-53-111	Ь	N	L+V+sn	0, 8-0, 1-0, 1	regular	5μ	transparentes					230		380	45,3	H2O-NaCl Boo	dnard and Vityk 1996
13	A-53-111	Ь	N	L+V+sn	0,5-0,3-0,2	regular	10μ	halita-hematita					235		386	45,3	H2O-NaCl Boo	dnard and Vityk 1994
14	A-53-111	Ь	IV	L+V+sn	0, 6-0, 3-0, 1	regular	10μ	transparentes	-50									
15	A-53-111	Ь	IV	L+V+sn	0,7-0,2-0,1	regular	10μ	transparentes	-54	4-							H2O-NaCl Bro	own & Lamb (FLINCOR)
16	A-53-111	Р	IV	L+V+ha	0, 8-0, 1-0, 1	regular	10μ	opaco-halita	-56								H2O-NaCl Bro	own & Lamb (FLINCOR)
17	A-53-111	Р	IV	L+V+sn	0, 6-0, 3-0, 1	irregular	10μ	transparentes	-63	-15							H2O-NaCl Bro	own & Lamb (FLINCOR)
18	A-53-111	Р	N	L+V+sn	0,8-0,2-tr	regular	10μ	opacos	-61	-1,7							H2O-NaCl Bro	own & Lamb (FLINCOR)
19	A-53-111	Ь	IV	L+V+sn	0, 6-0, 3-0, 1	irregular	20µ	transp opacos	-54	-4,7							H2O-NaCl Bro	own & Lamb (FLINCOR)
20	A-53-111	Ь	IV	L+V+sn	0, 8-0, 1-0, 1	regular	10μ	transp opacos	-63	19,8							H2O-NaCl Bro	own & Lamb (FLINCOR)
21	A-53-111	Р	N	L+Sn+V	0, 6-0, 3-0, 1	regular	10μ	halita-silvita					235	150	250	34,7	H2O-NaCl Boo	dnard and Vityk 1994
22	A-53-111	Р	VI	L+Sn+V	0, 6-0, 3-0, 1	ovoide	10μ	halita-opaco					260		318	39,8	H2O-NaCl Boo	dnard and Vityk 1994
Abré	eviaturas:	anh: anh.	idrita; cp	y: calcopiri	ta; L, líquidc	o; V, vapor,	; ha: halit	a; hem: hematita	; o: op	tco; sil:	silvita; s	: fase só	lida; sn: r	núltiples	fases sólic	las; P: prima	arias; S: secunda	arias

CAPÍTULO VIII

CONCLUSIONES

Altar (31° 29'S, 70° 28'O), un pórfido de Cu-(Au-Mo) con vetas epitermales de Au-(Ag-Cu), es uno de los numerosos prospectos recientemente descubiertos en el departamento de Calingasta (provincia de San Juan) que forman un *"cluster"* con gran potencial minero. Entre ellos, Altar es el que cuenta con la exploración más avanzada y hasta la actualidad ya se ha confirmado la presencia de un recurso mineral que totaliza 802 millones de toneladas con leyes de Cu de 0,42% y de Au de 0,059 g/t, considerando un *"cut-off"* de 0,30% Cu equivalente.

Las técnicas de procesamiento digital de imágenes satelitales y el uso de sistemas de información geográfica (SIG), permitieron generar un "mapa geológico base" de la zona del prospecto Altar (14 x 14 km) y un modelo de elevación digital del terreno. Mediante el mapeo de los afloramientos en el campo, se confeccionó el primer mapa geológico de detalle del distrito minero a escala 1:1000 (7 x 5 km) que, junto con el "mapa geológico base", constituyen información inédita para la geología de la zona. Las rocas volcánicas, volcaniclásticas y subvolcánicas de la región se han agrupado en dos ciclos magmáticos: el más antiguo del Mioceno temprano y el más moderno del Mioceno medio-tardío, separados por una discordancia.

Las rocas volcánicas-volcaniclásticas del Complejo Volcánico Inferior (CVI) andesitas basálticas, andesitas, dacitas y riolitas- representan un arco volcánico del Mioceno temprano (21,6-20,8 Ma) formado sobre una zona de subducción normal. Sus magmas se equilibraron con una asociación residual dominada por plagioclasa y piroxeno y experimentaron procesos de cristalización fraccionada y contaminación cortical. Las altas razones isotópicas de Pb de las andesitas basálticas del CVI pueden obedecer a una contaminación de una fuente mantélica por fluidos acuosos ricos en Pb procedentes de los sedimentos subductados. Los análisis isotópicos de las rocas del CVI de Altar, más enriquecidos que las rocas contemporáneas de la Zona Centro Sur del segmento de subducción horizontal y de El Teniente, señalan para el Mioceno temprano, una corteza continental algo más gruesa en la región de Altar que más al sur.

Las andesitas y las dacitas de la Suite Subvolcánica Superior (SSS) representan el arco magmático del Mioceno medio-tardío (11,75-8,9 Ma) emplazado sobre una zona de subducción más somera. Todos los cuerpos subvolcánicos porfíricos tienen firmas geoquímicas e isotópicas similares, y parecen provenir de una misma cámara magmática que tuvo actividad ígnea durante un lapso de ~3 Ma. Estas rocas requieren de una mineralogía

residual con hornblenda que indica condiciones de pH_2O altas en el sitio de generación de los fundidos.

En la zona de Altar, la ausencia de magmatismo entre el emplazamiento de las rocas del CVI y de la SSS, se correlaciona con las altas tasas de compresión documentadas para este período, que deben haber favorecido el almacenamiento de los magmas de la SSS en reservorios de la corteza. En este período, los fundidos de la cámara magmática de la SSS habrían experimentado procesos de mezclas, almacenamiento y homogeneización tipo MASH. Sus firmas isotópicas homogéneas indican aportes del manto y en menor medida de la corteza en los magmas.

Se sugiere que las firmas geoquímicas e isotópicas de "tipo adakita" reconocidas en las rocas de la SSS de Altar y en otros pórfidos fértiles de la Zona Centro-Sur del segmento de subducción horizontal, que fueron emplazados luego de que los magmas se equilibraron con hornblenda u hornblenda ± granate, implican un mayor grado de hidratación en el sitio de origen y de almacenamiento del magma, y un proceso de profundización de las cámaras magmáticas debido a mayores esfuerzos compresivos en la corteza. Las diferencias observadas en sus firmas isotópicas reflejan el incremento de las cantidades de componentes corticales incorporados en los magmas de sur (El Teniente) a norte (El Indio), que se correlaciona con el aumento del espesor cortical en el Mioceno.

Las nuevas edades U-Pb de las rocas ígneas de Altar confirman la conexión temporal entre la colisión y subducción de la dorsal de Juan Fernández, los cambios geoquímicos entre las rocas del CVI y la SSS y la mineralización en esta zona del segmento de subducción horizontal. Se concluye que desde el Mioceno medio-tardío, el manto y la corteza inferior debieron haber sido hidratados por fluidos procedentes de la losa y de la dorsal Juan Fernández, favoreciendo la generación de los magmas. A estas latitudes, la colisión del segmento O-E de la dorsal con la trinchera a los ~11 Ma y la subducción de la dorsal debajo de Altar a los ~11-10 Ma, deben haber propiciado cambios en el régimen de esfuerzos tectónicos, que permitieron a los magmas de la SSS ascender a niveles más someros de la corteza. Esta hipótesis explicaría la ubicación del *"cluster"* de pórfidos de Cu-Mo contemporáneos.

En el proyecto se diferenciaron dos centros magmáticos-hidrotermales con mineralización, localizados en el valle este y en el filo central, y tres intrusivos (pórfidos 2, 3 y 4) que aportaron fluidos hidrotermales y generaron alteraciones y mineralización en un intervalo de ~1,27 Ma. En primer lugar se emplazó el pórfido 1 (pre-mineral) que no produjo

alteración y mineralización hidrotermal, y que parece haberse intruido luego de un evento de recarga en la cámara magmática por un magma menos evolucionado (zonación inversa en las plagioclasas).

Luego de un período de ~0,13 Ma, se intruyó el pórfido 2 relacionado a un sistema hidrotermal que generó, en profundidad, alteración-mineralización de tipo pórfido de Cu-(Au-Mo) y el emplazamiento de brechas magmática e hidrotermal y, en los niveles superficiales, las vetas epitermales de Au-(Ag-Cu) con salbandas de alteración argílica avanzada. Los núcleos de cuarzo "poroso" en algunas vetas resultaron de la lixiviación de las rocas de caja (rocas del CVI y pórfido 1) por fluidos muy ácidos (pH < 2; T< 250° C) que ascendieron a través de fallas desde el centro hidrotermal del pórfido 2. Estos fluidos por lo general se originan durante la absorción de los volátiles magmáticos de baja densidad que contienen SO₂ y HCl por aguas meteóricas. El relleno de las vetas epitermales está constituido por cuarzo (calcedonia) y por enargita \pm cuarzo \pm alunita con un halo interno de cuarzo + alunita + S nativo, un halo intermedio de cuarzo + caolinita y un halo externo de alteración propilítica, que reflejan la progresiva neutralización de los fluidos por las rocas de caja y su enfriamiento. En conjunto, el pórfido 2 mineralizado, las brechas y las vetas epitermales forman el centro magmático-hidrotermal del sector este (11,75-11,62 Ma U-Pb).

Luego de ~0,49 Ma, en el filo central se emplazó el pórfido 3 y después de ~0,78 Ma, el pórfido 4 y las brechas magmática e hidrotermal que forman el centro magmático-hidrotermal del filo central (11,13-10,35 Ma U-Pb). Los sistemas hidrotermales asociados generaron -en un período de 0,78 Ma- las zonas de alteración y mineralización de tipo pórfido de Cu-(Au-Mo) en estos intrusivos.

Un modelo de sistema hidrotermal "unidireccional" no es aplicable a Altar, dado que una secuencia similar de alteraciones hidrotermales, mineralización diseminada y de 8 variedades de venillas, asociada a los tres pórfidos mineralizados (pórfidos 2, 3 y 4), se habría repetido al menos tres veces en el tiempo. Las alteraciones y mineralizaciones se distribuyen en zonas elongadas en sentido vertical, lo que permite inferir que los pórfidos se habrían emplazado a profundidades intermedias a superficiales. La ausencia de relaciones de corte inversas entre las venillas puede obedecer a la relación de aspecto elongada en sentido vertical entre los distintos complejos magmáticos-hidrotermales, su espaciamiento y un similar nivel de emplazamiento.

El primer pulso de mineralización de Cu-(Au) se asocia a sulfuros diseminados y a venillas de calcopirita + pirita con oro tipo 2b, posteriores a las de cuarzo tipo 2a de paredes muy irregulares y sin simetría interna (similares a las venillas tipo "A") que en niveles intermedios y superficiales tienen paredes rectas. El segundo estadio de mineralización

introdujo Mo (\pm Cu) en el sistema en venillas tipo 3 de cuarzo + molibdenita similares a las venillas tipo "B". Son complejas y tienen más de un pulso de apertura y relleno. Las venillas 5, 6 y 7 y sus variedades son similares a las venillas tipo "D", con salbandas de alteración fílica (tipo 5) y argílica avanzada (tipo 6). Entre ellas, el tercer estadio de mineralización importante introdujo sulfosales de Cu y Au nativo en las venillas tipo 6 y en sus salbandas mineralizadas en los niveles profundos, intermedios y superficiales de los pórfidos 3 y 4, en tanto que el pórfido 2 carece de venillas tipo 6, excepto en un sector muy fracturado. El último estadio de mineralización de Zn-Pb se correlaciona con las venillas tipo 7 de esfalerita y galena ubicadas en zonas de fracturas tardías de ambos centros mineralizados. El enriquecimiento de Cu supergénico en los dos centros mineralizados, ocasionó el reemplazo de los sulfuros - sulfosales hipogénicos por digenita \pm covelina.

Los estadios de mineralización de Cu-Au-Mo, tipos de venillas y halos de alteración similares en los intrusivos 2, 3 y 4, sugiere la exsolución de fluidos hidrotermales que experimentaron evoluciones similares desde su generación hasta su etapa final de enfriamiento y agotamiento en los dos centros mineralizados. A continuación, se resumen las conclusiones de las observaciones geológicas, del análisis de las asociaciones minerales en equilibrio y del estudio de las inclusiones fluidas de las venillas del pórfido 4, para proponer el siguiente modelo genético.

Fluidos magmáticos de salinidad baja (3-11% NaCl equivalente) y altas temperaturas (>425 a >550 °C) exsolvieron del pórfido que estaba cristalizando a presiones litostáticas de >450-650 bares. Estos fluidos eran químicamente complejos y contenían CO₂, además de otras sales disueltas (NaCl-CaCl₂-MgCl₂).

Los fluidos experimentaron fluctuaciones de la presión entre litostática e hidrostática debido a la reiterada propagación de las fracturas y sus sellados y, al descender la temperatura y la presión e interceptar el *"solvus"*, se desmezclaron en un fluido salino y en un vapor de baja densidad. A temperaturas mayores de 400 °C, los fluidos reaccionaron con el cuerpo ígneo aún no solidificado completamente (comportamiento dúctil), y con las rocas de caja para formar la alteración potásica ($cz + bio \pm anh \pm ab \pm ksp \pm rt \pm mt$) y precipitaron el relleno de las venillas tipo 1 (bio + $cz \pm mt \pm rt$) y el Cz-1 de las venillas tipo 2a ($cz \pm anh \pm ksp$). A temperaturas de las venillas 2a más jóvenes y de paredes rectas. Al descender la temperatura de los fluidos desde los 400 a los 350°Cy a presiones <300 bares, se habría producido la disolución del cuarzo Cz-1_(2a) y la precipitación del cuarzo Cz-2_(2b) junto a los sulfuros del primer pulso de mineralización de Cu-Au. Este pulso consiste de calcopirita \pm pirita de grano fino -ambas con trazas de Au- diseminadas en las rocas con alteración

potásica, en el "*stockwork*" de venillas tipo 2a reabiertas y en las venillas finas a capilares tipo 2b (cpy \pm ksp \pm cz \pm bio \pm anh \pm py), que representan un estado de sulfuración intermedio. El aumento del H₂S en los fluidos al desproporcionarse el SO₂ luego de reaccionar con el agua, debió provocar la precipitación de los sulfuros.

A medida que los fluidos exsolvían del cuerpo ígneo, ascendían y experimentaban episodios de desmezcla. A temperaturas mínimas de 350 a 380°C y presiones de 150 a 200 bares en condiciones hidrostáticas, precipitaron el relleno de cuarzo Cz-1 de las venillas 3 (cz \pm mo \pm cpy \pm py). Luego, es posible que ya en la transición potásica-fílica, el predominio de H₂S en los fluidos hidrotermales, un pH algo más ácido y el descenso de la presión y de la temperatura de los fluidos, provocaron la disolución del cuarzo Cz-1₍₃₎ y la precipitación de cuarzo + molibdenita del segundo estadio de mineralización de Mo (\pm Cu).

Los fluidos progresivamente más fríos (<400 °C) y más ácidos formaron primero la alteración clorítica (chl + ms/ill + cz \pm rt \pm hm) que no produjo cambios significativos en la mineralización y con el aumento de la acidez y la disminución de la temperatura, precipitaron el relleno de las venillas tipo 5a (cz + py + cpy \pm ms/ill \pm tour), que representan un tercer pulso débil de mineralización de Cu, 5b (py + cz \pm ms/ill \pm anh \pm cpy), 5c (anh \pm cz \pm cpy \pm py) y 5d (tour \pm cz), todas con halos de alteración filica (cz + ms/ill \pm tt tour). En las zonas próximas a las fracturas, los fluidos disolvieron a los sulfuros previos y al enfriarse los volvieron a precipitar incorporando Pb, Zn, Ag con As y Sb como elementos traza. Las fluctuaciones de la presión y de la temperatura a medida que se formaban las venillas 5, produjeron disolución parcial, fracturamiento, corrosión y nueva precipitación de cuarzo. Es posible que durante este estadio la actividad magmática se haya renovado a menor profundidad, con episodios de fragmentación hidráulica, exsolución de los volátiles desde la cámara magmática, formación de brechas magmáticas e hidrotermales y precipitación de abundante turmalina en las brechas y en las venillas tardías.

Luego del brechamiento y del fracturamiento, la mayor permeabilidad de las rocas debe haber permitido el ingreso de fluidos externos al sistema hidrotermal y su mezcla con los fluidos magmáticos. Fluidos oxidados que pudieron resultar de esta mezcla, parecen ser los responsables de la alteración hidrolítica y del lavado de los cationes alcalinos de los filosilicatos a menores temperaturas (<300 °C), pH y fS_2 y mayor fO_2 , generando los halos de alteración argílica avanzada (dick/caol ± cz ± rt) y las venillas 6a (tn + py ± tt ± Au) y 6b (py ± cz) asociadas a estos halos. Estos fluidos, que contenían Au, Sb y As, además de Cu, precipitaron la mayor concentración de Au en el sistema pórfido (cuarto estadio de mineralización de Cu-Au). La disminución del pH y el aumento de la fO_2 deben haber promovido la precipitación del oro transportado en los fluidos como bisulfuro. La mineralogía de las venillas 6c (py + en \pm cz) reflejan el aumento de la fS_2 en los fluidos. En las etapas finales de sistema, los fluidos se enfriaron y diluyeron lo suficiente como para precipitar el Zn y el Pb como esfalerita y galena (quinto estadio de mineralización de Zn-Pb) con anhidrita y calcita (venillas 7 y 8) en zonas de fallas tardías.

Durante la alteración supergénica, fluidos descendentes de pH muy ácido (pH <2) liberaron el Cu por la disolución de los sulfuros hipogénicos y lo precipitaron como digenita \pm covelina según sulfuros-sulfosales hipogénicos de Cu en la zona de enriquecimiento supergénico, que corresponde al sexto estadio de mineralización de Cu.

En la etapa de formación del centro mineralizado del sector este predominaron los esfuerzos inducidos por la intrusión del magma desde la cámara magmática subyacente, y no hubo superposición de la mineralización epitermal sobre el sistema profundo de tipo pórfido. Durante la formación del centro magmático-hidrotermal del filo central, los esfuerzos compresivos regionales tuvieron mayor importancia en el control del emplazamiento de los pórfidos 3 y 4. El alzamiento por deformación (pliegues y fallas) y la consiguiente denudación del terreno, deben haber ocasionado la superposición (*"telescoping"*) de las venillas tardías portadoras de sulfosales y de oro sobre las venillas tempranas y profundas.

Luego se emplazaron la andesita intrusiva, el pórfido 5 y la brecha magmática tardía, todos post-minerales. Entre el emplazamiento del pórfido 1 y el 5, la cámara magmática parece haber experimentado un proceso incipiente de diferenciación magmática. El lahar que aflora en el filo norte del distrito minero tiene una edad miocena tardía o posterior. La erosión glacial expuso la transición entre ambientes porfíricos subvolcánicos y las vetas epitermales superficiales de alta-sulfuración.

El enfoque integral de este estudio, que emplaza la geología y la mineralización del depósito dentro del contexto geológico y tectónico regional, permitió identificar procesos favorables a escalas regionales y locales, previas y contemporáneas a la formación de los pórfidos fértiles en esta región de la Cordillera Principal. Algunos factores que deben haber favorecido la formación del depósito de pórfido de Cu-(Au-Mo) y las vetas epitermales de Au-(Ag-Cu) Altar se detallan a continuación:

-El desarrollo y acumulación de magmas oxidados y con un alto contenido de agua en cámaras magmáticas profundas, durante períodos de compresión en la corteza continental.

-El ascenso de estos magmas y formación de una cámara magmática superficial de larga vida (~ 3 Ma) que alimentó a numerosos cuerpos intrusivos porfíricos y a brechas magmáticas y experimentó al menos un evento de recarga por un magma menos evolucionado.

-La interacción entre un magma más máfico y otro más félsico debe haber actuado como un método efectivo para aumentar el contenido de volátiles y de metales en la cámara magmática, generando inestabilidades térmicas y químicas que favorecieron la exsolución de metales, volátiles y fluidos.

-El suministro de fluidos y volátiles desde la cámara magmática durante un período prolongado de tiempo (~1,27 Ma) para generar actividad magmática e hidrotermal.

-El sistema hidrotermal estuvo controlado por repetidos sucesos de fracturación hidráulica y relleno de fracturas, que provocaron fluctuaciones de la presión y la temperatura de los fluidos. Estos episodios generaron un complejo sistema de fracturas registrado en un *"stockwork"* y en 8 variedades de venillas.

-Las fluctuaciones de la presión y de la temperatura de los fluidos, los episodios de desmezcla de los fluidos en una fase líquida salina y una fase vapor y la disoluciónprecipitación de cuarzo son factores que se vinculan directamente con la precipitación de la mineralización hipogénica de Cu-Au y de Mo.

-Las fracturas controlaron y focalizaron el ascenso de los fluidos que transportaban los metales en solución. Estos fluidos serían principalmente fluidos poco salinos, para permitir la solubilidad retrógrada del cuarzo que posibilitó la precipitación de nuevo cuarzo y sulfuros.

-La mayor parte de la mineralización está alojada en *"stockworks"* de venillas y en diseminaciones en las rocas alteradas.

-Se plantea que una precipitación diferencial del Cu-Au desde la fase vapor y el Mo desde la fase líquida pueden explicar la distinta distribución espacial del Cu-Au y Mo en el sistema Altar.