
UNIVERSIDAD NACIONAL DEL SUR

TESIS DOCTORAL EN INGENIERIA

Medical 3D image processing applied to
computed tomography and magnetic

resonance imaging

Diplom Informatiker

Felix Sebastian Leo Thomsen

BAHIA BLANCA ARGENTINA

2017



II



Prefacio

Esta Tesis se presenta como parte de los requisitos para optar al grado Académico

de Doctor en Ingenieŕıa, de la Universidad Nacional del Sur y no ha sido presentada

previamente para la obtención de otro t́ıtulo en esta Universidad u otra. La misma

contiene los resultados obtenidos en investigaciones llevadas a cabo en el ámbito del
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dido entre el 1.4.2012 y el 18.12.2016, bajo la dirección de Dr. Claudio Augusto

Delrieux.

UNIVERSIDAD NACIONAL DEL SUR
Secretaría General de Posgrado y Educación Continua

La presente tesis ha sido aprobada el .…/.…/.….. , mereciendo 
la calificación de ......(……………………)

III



IV



V

Für Valeria



Contents

Abstract IX

Nomenclature X

1 Introduction 1

1.1 Osteoporosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Imaging modalities . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Measuring fracture risk . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Alzheimer’s disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Aim of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Presentation of research . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Standard QCT processing 16

2.1 Visualization of 3D volumes . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Density-calibration of CT volumes . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Automatic placing of the calibration phantom . . . . . . . . . 22

2.3 Segmentation of the volume of interest . . . . . . . . . . . . . . . . . 24

2.3.1 Segmentation by registration . . . . . . . . . . . . . . . . . . . 26

2.4 Microstructural parameters . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Global parameters . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 The bone map . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.3 Voxel counting . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.4 Marching Cubes . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.5 Direct secant method and run-length method . . . . . . . . . 35

2.4.6 Distance transform method . . . . . . . . . . . . . . . . . . . 37

2.4.7 Further standard methods and issues . . . . . . . . . . . . . . 40

VI



CONTENTS VII

2.5 Reconstruction techniques . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Robust parameters 43

3.1 CT volumes and statistical methods . . . . . . . . . . . . . . . . . . . 45

3.1.1 The vertebra phantom . . . . . . . . . . . . . . . . . . . . . . 45

3.1.2 Assessment of precision and accuracy . . . . . . . . . . . . . . 48

3.1.3 The Bioasset study . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.4 Prediction of failure load . . . . . . . . . . . . . . . . . . . . . 50

3.1.5 In silico data . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Neighborhood operators . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Structural elements . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.2 Local operators . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 The ridge map . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.2 The Monogenic signal . . . . . . . . . . . . . . . . . . . . . . 60

3.3.3 Micro-structural calibration . . . . . . . . . . . . . . . . . . . 67

3.4 3D rose diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4.2 Directional standard deviation . . . . . . . . . . . . . . . . . . 76

3.4.3 Preliminary results and discussion . . . . . . . . . . . . . . . . 79

3.5 Local fractal dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . 83

3.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.6 Texture descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.6.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . 98

3.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4 Structural Insight 111

4.1 Purpose and workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 112



VIII CONTENTS

4.2 General classes and features . . . . . . . . . . . . . . . . . . . . . . . 114

4.2.1 Start screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2.2 File formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.2.3 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.2.4 General volume processing functions . . . . . . . . . . . . . . 118

4.2.5 Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2.6 Further methods to increase the efficiency . . . . . . . . . . . 121

4.3 Core functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.3.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.3.3 Computation of micro-structural parameters . . . . . . . . . . 125

4.4 Implementation of the structural parameters . . . . . . . . . . . . . . 128

4.4.1 Voxel counting . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4.2 Marching cubes . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4.3 Thickness transform method . . . . . . . . . . . . . . . . . . . 129

4.4.4 Direct secant method and run-length method . . . . . . . . . 130

Conclusions 133

List of Figures 136

List of Tables 138

References 139



Abstract

Existing microstructure parameters of computed tomography (CT) are able to com-

pute architectural properties of the bone from ex-situ and ex-vivo scans while they

are highly affected by the issues of noise and low resolution when applied to clinical

in-vivo imaging. A set of improvements of the standard workflow for the quantita-

tive computation of micro-structure from clinical in-vivo scans is proposed in this

thesis. Robust methods are proposed (1) for the calibration of density values, (2)

the binarization into bone and marrow phase, (3) fuzzy skeletonization and (4) the

calibration of the CT volumes in particular for the computation of micro-structural

parameters. Furthermore, novel algorithms for the computation of rod-volume frac-

tion with 3D rose diagrams and fractal approaches are proposed and the application

of local texture operators to diffusion tensor imaging is proposed. Finally an existing

computer program for the application in radiology departments, Structural Insight,

was improved and largely extended.

In particular the methods of the microstructural calibration, the fractal and the

texture operators showed significant improvements of accuracy and precision for

the prediction of fracture risk and the quantitative assessment of the progress of

Alzheimer’s disease, in comparison to existing state-of-the art methods. The meth-

ods were tested on artificial and in-vitro data and as well on real-world computed

tomography and magnetic resonance imaging (MRI) studies. The proposed novel

methods improve the computation of bone characteristics from in-vivo CT and MRI

in particular if the methods are combined with each other. In consequence, this

allows to assess more information from existing data or to conduct studies with

less ray exposure and regarding the MRI method in shorter time than nowadays

required.
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Nomenclature

Imaging devices

DXA dual X-Ray absorptiometry

HRMRI high resolution MRI, applied to ex-situ specimen

HRQCT clinical high resolution QCT; allows the highest

possible image quality, obtainable with standard

clinical CT (effective resolution ≈ 300× 300× 500µm3)

HRpQCT peripheral HRQCT, applied in-vivo to the forearm and

leg and ex situ to the vertebra; a CT scanner with a

reduced tube diameter, allowing to human peripherals

(arms and legs), reaching a higher image quality and

resolution than clinical CT (isotropic resolution

≈ 80µm)

MRI magnetic resonance imaging

µCT micro-CT: CT scanners with highest resolution but

very small specimen size used for pre-clinical and

material studies (isotropic resolution 0.5− 100µm)

QCT (clinical) quantitative computed tomography

QUS quantitative ultrasound

CT imaging

bone tissue hard bone matter part inside a spongy bone

cortex cortical bone, the outer shell of the bone

DV density value: calibrated CT values in mg/cm3

FE finite element: used to obtain the maximum failure

load of bone

X



NOMENCLATURE XI

HU Hounsfield unit: unit applied in CT scans, based on

absorption of water (0 HU) and air (−1000 HU)

marrow tissue soft matter inside a spongy bone.

microstructural

parameters

refers to certain indices describing the architecture of

cancellous bone

µ linear attenuation coefficient

Osteopenia early stadium of osteoporosis with T-score between

−2.5 and −1

Osteoporosis a skeletal disorder characterized by compromised bone

strength predisposing a person to an increased risk of

fracture with T-score smaller −2.5

spongiosa also cancellous or spongy bone: spongy part inside the

bone

T-score the difference in standard deviations of the patient’s

BMD in relation to the age-matched average

Densitometry parameters

aBMD areal bone mineral density: BMD obtained in the 2D

plane

BMC bone mineral content

BMD bone mineral density

BS bone surface

BV bone tissue volume

Ct.Th cortical thickness

DA degree of anisotropy

Fr.I fragmentation index

Fexp experimentally derived maximum failure load

MIL mean intercept length, a distribution over all

orientations

MV marrow tissue volume

PV plate volume: volume of bone tissue caught in plates

(oblate)

RV rod volume: volume of bone tissue caught in rods

(prolate)



XII NOMENCLATURE

SMI structure model index

TBS trabecular bone score

Tb.Di trabecular distance, average distance between bone

ridges

Tb.N trabecular number, average number of bone ridges per

mm

Tb.Sp trabecular separation, average marrow space

Tb.Th trabecular thickness, average thickness of bone

TMC or BMCseg tissue mineral content or segmented BMC

TMD or BMDseg tissue mineral density or segmented BMD

TV total volume

FDi(~x) local fractal dimension obtained with method i ∈ {1, 2}
at voxel ~x

fTb.Th(~x) local fractal trabecular thickness at voxel ~x

FDi average of FDi(~x)

FDi.SD standard deviation of FDi(~x)

fRVi/BV fractal rod volume/bone volume of FDi(~x)

fTb.Th average of fTb.Th(~x)

fTb.Th.CV coefficient of variation of fTb.Th(~x)

Image processing and statistic

Bone signal containing the membership of each voxel of

belonging to bone

IQR inter-quartile range

LTP long term precision: metric to measure the

accuracy/trueness

MED median

Ridge fuzzy skeletonization, signal of the bone ridges

ROI 2D region of interest

SKW skewness, obtained as 3 weighted moment

STP short term precision: metric to measure the

precision/robustness

VOI 3D volume of interest

Voxel volume element (3D pixel)



NOMENCLATURE XIII

QCV quartile coefficient of variation

QN% N% quantile

N general 3D structural element or neighborhood

NVox 3D neighborhood-based structural element

N Euc 3D neighborhood with Euclidean metric

N∞ 3D neighborhood based on the infinite-norm

N Sphere 3D spherical Euclidean neighborhood with real valued

memberships

NGauss 3D spherical Gaussian neighborhood

V volume / 3D image

VHU volume in Hounsfield units

VDV volume in density values

VGlobal volume in density values, obtained with global

microstructural calibration

VLocal volume in density values, obtained with local

microstructural calibration

~ε 3D vector depicting the voxel spacing in x-, y- and

z-direction

~x voxel in a 3D volume V

~c point/voxel in a mask or neighborhood N
λi i’th eigenvalue (i ∈ {1, 2, 3}) obtained from a principal

component analysis

Magnetic resonance imaging

Alzheimer’s disease

(AD)

A cronic neurodegenerative disease causing 60% to

70% of cases of dementia

b-value reflects the strength and timing of the gradients used

to generate diffusion-weighted images

DTI diffusion tensor imaging

DWI diffusion weighted imaging

FA fractional anisotropy

GM gray matter: brain region containing numerous cell

bodies and relatively few myelinated axons.

MD mean diffusivity



XIV NOMENCLATURE

Mild cognitive

impairment (MCI)

incipient dementia or isolated memory impairment;

may occur as a transitional stage between normal

aging and dementia and is often a prodromal stage of

Alzheimer’s disease

MNI 152 standard

space

specific brain atlas defined by McConnell Brain

Imaging Centre (MNI) which contains 152 different

labeled regions

NEX number of excitations / number of averages: number of

repetitions that were averaged in the final signal

RD radial diffusivity

TBSS tract-based spatial statistics

TE echo time

TR repetition time

VBA voxel-based analysis

WM white matter: brain region containing mainly

long-range myelinated axon tracts and very few cell

bodies



Chapter 1

Introduction

The impact of Osteoporosis grows annually by 3%, reaching prospectively 10 million

cases of hip-fracture in 2050 [25] and annual costs of 200 billion US dollars [51, 118],

accompanied with a first year mortality of 10 − 20%. Similarly, worldwide costs

for the treatment of Dementia and Alzheimer’s were at 604 billion dollars in 2010

[143] with much lower costs for the treatment of mild dementia than for progressed

dementia [86].

Clinical interventions for the treatment of osteoporosis or Alzheimer’s disease

are often only performed, if their costs stay in relation to the expected increase of

life time [67]. Thus, besides improving the treatment strategies, improvement of

computerized radiology methods are required for an early and accurate diagnosis,

helping to increase the efficiency and to decrease the overall costs of the treatment.

1.1 Osteoporosis

Osteoporosis reflects an increased fracture risk of the bones. It is defined as a

skeletal disorder characterized by compromised bone strength predisposing a person

to an increased risk of fracture. Bone strength primarily reflects the integration of

bone density and bone quality [66]. Bone density refers to mineral content and bone

quality means several aspects, such as architecture turnover, damage accumulation

and mineralization. Bone density peaks at an age between 20 and 30 and declines

as people age. Hormonal changes, most notably menopause, accelerate this decline.

For the purpose of diagnosis, individual bone density is commonly compared to an

age-matched reference collective [49]. This is measured by the T-score, the standard

1



2 CHAPTER 1. INTRODUCTION

deviation below the age-matched mean. The World Health Organization defines

osteopenia by T-score between −2.5 and −1 and osteoporosis by T-score smaller

−2.5.

Patients with osteoporosis are treated with a diet rich in calcium and vitamin

D, also physical exercise, in particular running and jumping stimulates bone forma-

tion. For patients with very low T-score, drug diets are required for instance with

bisphosphonates or hormone therapies. The use of drugs however depends on the

diagnosis, which requires the determination of the individual fracture risk [49]. The

T-score as the standard measure of osteoporosis considers only the BMD and age,

though it was already shown that bone micro-architecture plays another important

role for the overall fracture risk [87]. In particular physical exercise effects a strong

reduction of fracture incidence [62] but only a relative low bone density gain of

around 1% [145]. Osteoporosis is associated with a deterioration of the complex

three-dimensional trabecular network [38].

The anatomical location is an important factor for obtaining the fracture risk

since a person can own a strong spine but fragile arms or legs. It is therefore

important to measure bone health separately in each particular location [43]. Most

important for life quality are the vertebrae and the calcaneus, while bone stability at

the forearm contains practically no direct impact to the lifetime expectancy, though

much easier to measure. Bone contains the spongy part and the cortical shell. The

contribution of the cortex to the mechanical load might be between 45% and 75%

[108]. Conversely, since the mechanisms, that form the spongy part and the cortex

are tightly connected, the mechanical load can also almost completely attributed to

spongy bone [35]. Thus, bone stability can extracted equally from the spongiosa

or the cortex. The computation of bone characteristics from the spongiosa has

advantages over cortex. The convex shape of the interior of the vertebra allows to

assign full memberships to a high number of spongiosa-voxels, while that assignment

is difficult for voxels belonging to the cortex, as the real cortex is very thin but

appears generally blurred in the CT volumes. This allows to assign well-defined

representative volumes of interests to the spongiosa, which contain a sufficient size to

deduce significant claims. Furthermore, the variety of existing spongeous structural

parameters exceeds the one obtainable on the cortex, offering a wider set of possible

applications. Finally, the spongeous BMD explains about 70% of the failure load,

and up to 90% can be explained with BMD in combination with micro structural
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Figure 1.1: Bone measurement modalities ordered by their ability to measure bone
density and bone structure. HRQCT is the optimum in-vivo method to obtain bone
density and structure.

parameters [140], thus outperforming the 75% contribution of the cortex to the

mechanical load.

1.1.1 Imaging modalities

Modalities to measure bone health can be organized in those that do not use X-rays

and thus not affect the patient’s health and those that use X-rays. Other categories

are the ability to measure bone density versus bone quality or the applicability to

measure the spine or calcaneus in-vivo versus techniques that apply ex-vivo, Fig. 1.1.

In practice also the costs of the devices are important, QUS or DXA devices are most

cost efficient, followed by clinical CT devices; MRI is most expensive. Preclinical or

peripheral devices (HRpQCT, µCT or HRMRI) are mostly only used for research

and contain additional costs.

Quantitative ultrasound

Quantitative ultrasound (QUS), Fig. 1.21, is a 1D technique to measure bone density

only, micro structure parameters cannot be obtained, it measures the speed of sound

and derives then indirectly the density of the material. Target parameters of QUS

1Images of Fig. 1.2 are obtained from http://www.pekinhospital.org/womens-health/

womens-diagnostic-center/achilles-express, https://en.wikipedia.org/wiki/Magnetic_
resonance_imaging and https://www.uclouvain.be/en-98947.html.

http://www.pekinhospital.org/womens-health/womens-diagnostic-center/achilles-express
http://www.pekinhospital.org/womens-health/womens-diagnostic-center/achilles-express
https://en.wikipedia.org/wiki/Magnetic_resonance_imaging
https://en.wikipedia.org/wiki/Magnetic_resonance_imaging
https://www.uclouvain.be/en-98947.html
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Figure 1.2: Scanners without X-ray technique: a) QUS-Scanner, b) clincal MRI, c)
preclinical HRMRI.

are BMC and BMD. It is cost efficient but is only applicable at the extremities

(leg or forearm), which are generally not the critical regions for fracture risk [43].

The measurements obtained with QUS are as good as these obtained by 2D DXA

[39, 52].

Magnetic resonance imaging

Magnetic resonance imaging (MRI) and high resolution MRI (HRMRI) do not emit

x-rays to obtain 3D volumes of the specimen. The nominal resolution depends on

the acquisition time, and is for in-vivo MRI 1000 × 1000 × 3000µm3, however can

be much higher on HRMRI ex-vivo studies. Certain MRI protocols are relatively

time consuming, thus a common problem of the analysis of in-vivo MRI volumes are

motion artifacts. Density measurements are not obtainable, but micro structural

parameters can be assessed. Since BMD is however the mayor predictor of fracture

risk in osteoporosis, estimations of bone health require generally a combination with

X-ray based techniques (for instance DXA). HRMRI is only applicable to ex-situ

samples or to mice and rats.

Microscopy

Histology using microscopy is an invasive 2D imaging techniques which is of impor-

tance since many of the standard microstructural parameters, such as for instance

BV/TV, were originally derived as parameters of 2D histology. An analysis with the

microscope allows to visualize much finer levels of detail than all other imaging tech-
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Figure 1.3: Scanners with X-ray technique: a) DXA, b): clinical CT for obtaining
QCT and HRQCT scans, c): HRpQCT

niques, in particular the visualization of the osteoblasts and osteclasts, the highly

specialized bone cells responsible for matrix mineralization and demineralization.

Types of microscopes, used for such analyzes, are electron microscopy, total internal

reflection fluorescence microscopy or internal reflection microscopy [3].

Modalities with ray exposure

X-ray techniques are optimum to measure bone density, Fig. 1.3 2 For this purpose,

the images are calibrated, thus mapping Hounsfield units to density units in mgcc

dipotassium phosphate (K2HPO4) or calcium-hydroxylapatite (Ca5(PO4)3(OH)),

both representing the calcium loading. After calibration, the CT scans are called

quantitative CT (QCT). For some micro-structural parameters of bone quality, the

calibration to density values is not necessarily required. Figure 1.4 shows scans

of the same specimen obtained with a pre-clinical HRpQCT device and a clinical

HRQCT device. The gap of resolution becomes even more evident when comparing

µCT with standard QCT.

Dual X-ray Absorptiometry

The 2D Dual X-ray Absorptiometry (DXA) has a nominal resolution of 500×500µm2

and is intended to access the areal BMD (aBMD). It is the common method for the

diagnosis and monitoring of osteoporosis. This technique is low cost and easy to

2Images of Fig. 1.3 are obtained from https://en.wikipedia.org/wiki/Dual-energy_

X-ray_absorptiometry, http://www.ascendiahealth.com/028_03_062_007_16slice_ct_

applications.jpg and http://www.osteoporosezentrum-hamburg.de/.

https://en.wikipedia.org/wiki/Dual-energy_X-ray_absorptiometry
https://en.wikipedia.org/wiki/Dual-energy_X-ray_absorptiometry
http://www.ascendiahealth.com/028_03_062_007_16slice_ct_applications.jpg
http://www.ascendiahealth.com/028_03_062_007_16slice_ct_applications.jpg
http://www.osteoporosezentrum-hamburg.de/
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Figure 1.4: Identical human vertebra: a) scanned with a preclinical HRpQCT device,
b) scanned with a clinical HRQCT device.

handle and emits only few ray exposure to the patient. It allows also to visualize

the macro structure of the skeleton and to access a microstructural parameter, the

trabecular bone score (TBS). While its accuracy for bone densitometry is the same

as the one of QUS, it allows to obtain measurements directly in the calcaneus or

spine. The degree of osteoporosis is computed from the T-score, which contains the

aBMD, age and size of the patient. However the assessment of general 3D micro

structural parameters, besides TBS, is not possible with DXA.

In-vivo quantitative computed tomography

Clinical quantitative computed tomography (QCT) is 3D imaging technique with

nominal resolution 300 × 300 × 300µm3. Image quality and ray exposure can be

adapted depending on the purpose. For the imaging of bone micro structure, gener-

ally high resolution QCT (HR-QCT) is used. Standard QCT is only used to measure

cortical structural parameters and the trabecular BMD.
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Preclinical computed tomography

Peripheral HRQCT (HRpQCT) reaches a nominal resolution of 61 × 61 × 61µm3

(Scanco XtremeCT II) but is only applicable ex-situ on the spine or the calcaneus.

It allows to compute all density and micro structure parameters with high accuracy,

thus is often used as a ground truth imaging technique for ex-situ studies. Micro-

CT (µCT) is a preclinical imaging technique with nominal resolution of up to 0.5×
0.5× 0.5µm3 and a image matrix of 8192× 8192 pixels (Scanco µCT 50 in nanoCT-

mode). It is solely applicable to ex-situ studies due to the highly limited maximum

sample size and the high ray exposure. This imaging technique is often used in

animal studies to analyze specific treatment effects. Also it applies for material

proofing in non-medical scenarios. A nearly complete list of applications of µCT can

be found at http://www.scanco.ch/en/applications/applications-overview.

html, including among others scanning of ancient Egypt mummies, quality assurance

of pearls, scans of electronic circuits and imaging of diatoms.

1.1.2 Measuring fracture risk

The individual bone strength from HRQCT or QCT volumes can be obtained from

two different approaches, directly by simulating the application of an applied force

and indirectly by assessing bone characteristics.

FE modeling

The direct way for modeling the stability of the bone micro architecture in physical

terms uses the finite element model (FE). This method interprets the bone as an

entire structure. The bone is divided in finite models consisting of a few voxels

of known density and stability. This set of finite elements is virtually loaded and

crushed in a computer simulation, which yields local information of the strength

and flexibility. The main application of this approach are virtual crash tests of cars

and automobiles and it is worth to note, that FE requires in general a significant

amount of computer resources. When applying FE analysis to the computation of

bone stability, the results remain often uncertain due to insufficient image resolu-

tion, inadequate parceling or just the uncertainty of basic strength and flexibility

parameters of the individual elements. Finite element modeling is not explicit topic

of this work, nevertheless a number of FE analyses were performed, which used the

http://www.scanco.ch/en/applications/applications-overview.html
http://www.scanco.ch/en/applications/applications-overview.html
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computer program Structural Insight, developed for this thesis [20, 41, 19, 79]. FE

is expected to become a major analysis technique for HRQCT imaging of the bone.

Micro-structural parameters

The indirect way for estimating bone strength is the analysis of the micro archi-

tecture with structural parameters. Each of these structural parameters are an

aggregate of the complete volume of interest (VOI) as a single scalar, reflecting a

specific feature of the specimen. The estimation of fracture risk or bone stability is

then derived from linear models or regression analyses. Accurate accessed structure

parameters open a perspective beyond the question about bone strength or fracture

risk, they aim to explain changes of the trabecular network during a medical treat-

ment or can be used to describe the structural evolution of bone cancer [13, 12].

Healthy bone for instance shows higher entropy of the trabecular network, which

does not imply directly an increased bone strength [134].

Structural parameters like Tb.Sp or BV/TV are standard micro-structural enti-

ties in the analysis of trabecular bone and very well understood. The most of these

standard parameters were historically developed for 2D histomorphometry or pre-

clinical ex-situ resolution, such as obtained with µCT, HRpQCT or HRMRI. These

ex-situ settings contain very high resolution and very low noise. The “structural

entity” Tb.Sp was defined before reasonable computer methods for its computation

were available. Nowadays exist different methods to calculate the trabecular sepa-

ration [122, 54, 26, 71], all of these methods deliver distinct results and often new

method specific structure parameters, from whom some are difficult to interpret.

In-vivo micro structural parameters

Clinical in-vivo HRQCT is a setting with much coarser resolution as the aforemen-

tioned, in particular accompanied with relative high noise besides other additional

issues. Technically two different ways exist for the application of micro-structural

parameters on clinical HRQCT or QCT resolution. The first approach searches al-

gorithms, that are applicable to in-vivo resolution to compute the well-understood

standard parameters, while the second approach seeks parameters that contain the

highest ability to predict the fracture risk. Both approaches make sense and are

valid, the second method contains however the risk, that the obtained structural

parameters are difficult to interpret and thus contain very low meaning if taken for
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Figure 1.5: Pipelineg processing CT images. First row: Scan and reconstruction,
second row: Calibration, segmentation and binarization, third row: computation of
micro-structural parameters (or FE) and prediction of bone quality.
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themselves. The optimum is a method which allows to obtain both, the computation

of standard entities on noisy in-vivo input volumes and a high ability to predict the

actual fracture risk.

Most important for the translation of micro structural parameters from HRpQCT

to QCT domain is the influence of the threshold. Micro structural parameters are

generally computed on a binary representation of the volume, hence bone-voxels are

coded as ones and marrows as zeros. This reduces the contained information by

a factor of 4096, since the input Hounsfield unit of each voxel, typically decoded

as a 12bit integer is mapped to 1 bit. While this initial step is unproblematic

on HRpQCT, on QCT or HRQCT, the binarization is strongly biased by the low

resolution and the high noise. Hence, an adaption of HRpQCT methods to QCT

requires to move the binarization and information reduction to a later position in

the processing pipeline or to replace the binarization with alternate steps [71].

A second important idea for the computation of micro structural parameters is

the concept of fuzziness. Since in-vivo volumes contain uncertainties in the first

place, due to low resolution and noise, it sounds obvious that structural parame-

ters based on these input volumes are uncertain as well. The standard algorithms

however do not involve the uncertainties. The standard method for the computa-

tion of the trabecular thickness for instance computes the radius of the maximum

spheres, that fit in the marrow space. When the input volume contains noise, the

marrow space is corrupted with pseudo-bone voxels. Hence the direct application

of the standard method would compute much lower trabecular separations than on

a noise-free volume. However, when allowing the sphere to intersect those noise-

generated pseudo-bone, one could still compute the initial trabecular separation,

however now as a probability based distribution [90].

Wolfram Timm showed in his PhD thesis [134] how Markov processes can be

applied to the micro structural analysis of CT volumes. Markov processes can be

interpreted as a special kind of local texture operators, which compute a certain

characteristic solely from a local neighborhood or defined range of view. By doing

so, the value of each output voxel depends only on a limited and defined set of input

voxels and this makes these kind of operators applicable be computed in a very fast

manner for instance on Graphics Processing Units (GPUs).
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In this thesis, all three concepts, the late or suspended thresholding, the fuzziness

and the locality are investigated and combined to extract robust micro structural

parameters from in-vivo QCT.

Figure 1.5 shows the typical pipeline of volume processing for obtaining measures

of bone quality of fracture risk. While in general all steps contribute to the final

outcome, this thesis concentrates in particular on the preprocessing and computation

of micro-structural parameters.

1.2 Alzheimer’s disease

This work contains an application to magnetic resonance imaging for identifying the

severity of the Alzheimer’s disease. The computer processing situation in magnetic

resonance imaging is similar in terms of the low spatial resolution and the high

noise level, which requires similar image processing methods as described in the last

section. In particular texture and fractal methods have been applied to MR imaging

[58, 59]. However, in contrast to CT, MRI offers a wide set of input volumes, such

as scalar ones (T1, T2, etc.) or vector based (Diffusion weighted imaging (DWI),

diffusion tensor imaging (DTI), etc.). Most DTI parameters of the white matter in

the context of Alzheimers disease, such as fractional anisotropy or mean diffusivity,

are only sensible between healthy and unhealthy cohorts [119]. Section 3.6 shows

a set of noise robust texture parameters, which were developed during this thesis.

These parameters are able to quantify the severity or the progress of Alzheimers

disease. Due to the increased sensitivity and precision of the proposed method, this

approach might as well gain applicability to further pathologies like Schizophrenia

[72] or TDAH [70].

1.3 Aim of the work

In this work, a set of computer methods are presented to access robust in-vivo

CT or MRI parameters, using the concepts of locality and fuzziness. To allow

comparison of the obtained parameters with existing ones, chapter 2 contains a

thorough introduction to general CT volume processing and explains briefly the

standard structural parameters. Further information about standard parameters

can be found elsewhere [49, 123, 46, 134].
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The local operators are applied to an improved pre-processing of the CT volumes,

which allows to compute a thinned representation of the bone Sec. 3.3.1 and to

improve the calibration of the CT volumes for the computation of micro-structural

parameters Sec. 3.3.3. A new method for the computation of the anisotropy of

the bone is presented. The anisotropy is computed in a local manner, rather to a

global one, Sec. 3.4. This allows to obtain information of the rod volume- or plate

volume-ratio. A second method for the computation of the rod volume- and plate

volume-ratio is presented in Sec. 3.5, here the information is obtained with a fractal

approach, which allows additionally to obtain the trabecular thickness. A direct

application of local texture operators is presented in Sec. 3.6, with an application

to brain DTI data of patients with Alzheimer’s disease. Many of the discussed

image processing techniques apply not only to the specific field of CT imaging but

as well in other 3D modalities, such as MRI or 2D modalities like satellite and

microscopic imaging [109]. In particular the fractal methods are applied not only

to image precessing in the medical domain [22, 77, 9] or in the general domain

[83, 6, 110] but in particular for the analysis of complex and heterogeneous systems

not related with image processing [84, 103, 1, 32, 99]. The last chapter Ch. 4 shows

the program Structural Insight, which was developed during this thesis to provide

a handy radiology software for the computation of micro structural parameters.

1.4 Hypothesis

It is possible to design methods, which improve significantly the computation of

micro-structural parameters on in-vivo QCT if replacing certain image processing

steps with more adequate ones, such as a fuzzy binarization, a micro-structural

calibration, the use of fractal or scale space methods and fuzzy or weighted neigh-

borhoods, which leads ultimatively to

• a better explanation of the micro-structure.

• an improvement of the correlation between ground truth HRpQCT parameters

and in-vivo parameters.

• the ability to apply multi-site group studies with different noise spectra with

small sample size.



1.5. PRESENTATION OF RESEARCH 13

• an improvement of the prediction of failure load and thus to determine osteo-

porosis.
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bara Krug: Veränderungen der computertomografisch erfassten trabekulären
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Chapter 2

Standard processing of

quantitative computed

tomography

This chapter describes the theory of the standard processing methods for the com-

putation of micro-structural parameters. Techniques for the visualization are im-

portant to detect issues of the 3D volume, Sec. 2.1. Since computer screens are only

able to visualize 2D images, a number of different ways exist for the mapping of 3D

volumes, none of those projections own however the ability to depict the entire 3D in-

formation. Section 2.2 describes the calibration of the input volume from Hounsfield

to density values. This section contains a subsection, describing a method for the

automatic placement of the calibration phantom in clinical CT volumes, developed

during this thesis. Section 2.3 describes the techniques for the segmentation of the

vertebra into its specific volumes of interests. The last section 2.4 describes the

standard techniques to conduct micro-structural parameters, including certain gen-

eralizations. The parameters described here were used in the following chapter 3 as

reference values. The chapter ends with a discussion and conclusion section about

the standard methods.

2.1 Visualization of 3D volumes

For visualizing 3D CT volumes on a computer screen, certain circumstances need

to be considered. CT volumes contain at every voxel the Hounsfield unit, rather

16
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Figure 2.1: Five sample colormaps for the qualitative and quantitative visualization.

than a specific gray-value or color, as in photographs. The Hounsfield units need to

be displayed to colors with a specific colormap. For the visual quantitative analysis,

most commonly the gray value or bone colormaps are used. The hot, jet- and

cold2hot-colormap are more adequate for a qualitative analysis of the Hounsfield

units. Figure 2.1 shows sample colormaps used for the visualization of such data.

There exists no standard setting of contrast and brightness since Hounsfield

units are unlimited, in contrast to photographs which occupy for instance color

values between 0 and 255 only. The HU of air is −1000 and the one of metal can be

higher than 5000, human tissue and bone cover typically a range between 100 and

3000.

The 3D volume must be projected to the 2D plane or screen. The 2D projec-

tion is defined by a projection angle and the projection range, the first and

last plane, defining the subset of the 3D volume. If fixing the projection angle to

zero degrees and the projection range to the entire volume, the 3D volume can be

interpreted as a stack of 2D images, Fig. 2.2 (a). When interpreting the voxel val-

ues of every x-y-pixel on the screen as a 1D function of z-values, Fig. 2.2 (b). The

standard projection is the slice projection, which returns the 2D image at a certain z-

coordinate, Fig. 2.2 (c), statistical maps are e.g. the maximum, minimum, average,

standard deviation and range projection, Fig. 2.2 (d-g). The maximum intensity

projection (MIP) serves for instance to detect pulmonar nodule and the minimum

intensity projection (MinIP) to detect pulmonar emphysema. True volumetric pro-

jections, that suggest the ability to watch inside the volume are the depth field-
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Figure 2.2: 3D projections. (a) Interpretation as a stack of 2D images, (b) sample
evolution of the HU-values in z-direction at a certain x-y-pixel, (c) slice projection,
(d) maximum intensity projection (MIP), (e) average intensity projection, (f) stan-
dard deviation projection, (g) standard deviation by range projection (SD/range),
(h+i) depth-field projection with gray- (h) and jet-colormap (i), (j+k) ray casting
with bone- (j) and copper-colormap (k).
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Figure 2.3: Three examples of ray casting. (a) high opacity values visualize the
surface (skin), (b) low opacity values visualize the hard tissue (bone), (c) a wide
range of opacities with a qualitative colormap allow to visualize both, the skin and
the skeleton. The artifact in the region of the patient’s mouth is generated by metal.

and the ray casting-projection. The depth field projection returns the index of the

uppermost slice, whose voxel value exceeds a given threshold, Fig.2.2 (h+i). The

ray-casting projection assigns every voxel a specific color and translucency value,

varying from opacity to transparency. The object can be imagined as a 3D matrix

of glass-cubes of different colors and transparencies. The resulting 2D image is the

aggregation color if watching the object from the front, Fig.2.2 (j+k). By varying

the specific color- and opacity map, the ray casting projection can visualize the skin

or soft tissue Fig.2.3 (a), bone tissue (b) or even both together (c).

2.2 Density-calibration of CT volumes

The calibration of the CT data serves to map the data from Hounsfield units HU

to density scale mg/cm3. A CT scan, which is not expressed in HU but instead in

density values is called quantitative CT (QCT). The Hounsfield units (HU) are nor-

malized linear attenuation coefficients µ ≥ 0, which fix the values of water (HU=0)

and air (HU=−1000). Since the linear attenuation coefficient of air is zero, the

simplified linear relationship reads

HU(µ) = 1000

(
µ− µwater

µwater

)
. (2.1)
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Substance µ(cm−1) HU DV1(mg/cm3) DV2(mg/cm3)
Air 0 −1000 −767.1 −775.6
Fat [0.141, 0.149] [−100,−50] [−92,−55] [−83,−44]
Water 0.157 0 −17.1 −5.6
Soft tissue [0.173, 0.204] [100, 300] [58, 208] [71, 225]
Bone [0.267, 0.629] [700, 3000] [508, 2233] [533, 2304]

Table 2.1: Linear attenuation coefficients for 75 keV [16], Hounsfield units and
corresponding calibrated apparent densities using DV1 [24] and DV2 [117] of common
substances.

In practice, that map is only linear for low emission energies (75 keV) while for

higher emission energies the map consists two linear relationships with a lower slope

for negative HU’s and higher slope for positive HU’s [15]. A volume expressed in

HU’s can be transformed to density values DV(mg/cm3) with a linear mapping,

DV(HU) = α HU + β, (2.2)

where DV are the density values and HU the Hounsfield units. This mapping pro-

duces also negative values, however the density in bone and soft tissue remains

positive. Negative values appear only at voxels that contain fat, air, water and

noise. Jaime Peña investigated during the conduction of his PhD thesis the appar-

ent density in regions containing fat or air [100, 101, 102]. The practical reason for

the choice of this linear mapping is the distribution of the noise. A non-linear map-

ping, disallowing negative values, would generate noise, that were dependent on the

actual density value and would in consequence affect the computation of the BMD,

which is only exact, if the noise is independent of the actual density. Hence, since

the relationship between HU and DV is generally non-linear, the Eq. 2.2 applies

only for cortical and trabecular bone, but not for the quantification of soft tissue

[24]. The Hounsfield units of common substances are shown in Tab. 2.1 together

with sample maps between HU and densities: DV1 = 0.75 HU − 17.1, [24] and

DV2 = 0.77 HU− 5.6, [117].

Since the map between HU’s and DV’s is linear, the calibration is in general

unnecessary for the analysis of the micro-structure, when the analysis is performed

on a binary representation. In particular if the segmentation threshold is based on

a fixed BV/TV rather than on a density value, the corresponding threshold can be

directly derived from the corresponding histogram, either of the DV’s or HU’s. The
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Figure 2.4: Different calibration phantoms. a) Image Analysis InTable phantom, b)
Mindways calibration and quality assurance phantom, c) European spine phantom
from QRM GmbH, d) combined quality assurance and body phantom from Tissue
Simulation & Phantom Technology, which can be used with different inserts.

particular values of α and β vary with the noise level, which is influenced by the

patient’s size and the scan protocol. The calibration parameters can also vary inside

the same scan, thus one can compute values of α and β separately for each slice,

which is a local calibration.

The computation of the parameters of Eq. 2.2 are performed with the aid of

a calibration phantom, which must be placed under the patient during the scan,

Fig. 2.4. The calibration phantoms contain at least two different rods filled with

a bone-equivalent of different known densities. Common substances are calcium-

hydroxylapatite Ca5(PO4)3(OH), sometimes also called HA, which is the main inor-

ganic part of bones (bone mineral) and standard in modern calibration phantoms,

an alternative calcium equivalent is dipotassium phosphate K2HPO4, a highly water

soluble salt. The mapping is then computed from a linear fit of the mean HU’s of

each rod and each slice and the defined physical bone-densities. Sometimes, a field

uniform correction (FUC) factor is involved, which aims to map the density values

under the patient to the desired location in the patient.

DVFUC = FUC ·DV. (2.3)

However, the use of a FUC can downgrade the calibration, in particular if the

distance between the calibration phantom and the area of interest is not constant.

The FUC itself is obtained with a quality assurance (QA) phantom, which simu-

lates the intersection of a human but contains known densities. The FUC can be

obtained with special quality assurance phantoms, Fig. 2.4 (b-d), for instance with

the European Spine phantom, Fig. 2.5.
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Figure 2.5: High resolution CT scan (120kV, 340mAs), containing a QA phantom
(European spine phantom from QRM GmbH) and 3 different calibration phantoms:
from bottom to top: InTable from Image Analysis (4 rods), Model 3 from Mindways
(5 rods) and a phantom from the Hamburg-Harburg University of Technology (3
rods). (a) Noise-level of each slice, (b) noise reduction by averaging in z-direction.

2.2.1 Automatic placing of the calibration phantom

The critical step in the calibration procedure is to obtain the actual calibration

parameters α and β which requires to fit a mask of the calibration phantom to the

actual volume data. A procedure for the automatized placing of the calibration

phantom was developed for this study and applied to the HRQCT data of the

EuroGiops study [33, 42]. The performing by hand is time consuming and less

accurate than the proposed automatic procedure. The procedure uses the circular

Hough-transform of an edge presentation, which generates peaks in the center of

the circles. The center coordinates of every tube at each slice can be obtained by

the following algorithm in five stpes: (1) Smooth slice i in z-direction by taking

the point-wise average of the slices i − n, . . . , i + n, Fig. 2.5 and Fig. 2.6(a). (2)

Apply the 2D Monogenic signal (see Sec. 3.3.2) as an edge detector and to obtain

information of the local orientation, Fig. 2.6(b). (3) Apply a Circle-Hough-transform

of the binary result of the edge detection with weighting according to the desired

orientation, Fig. 2.6(c). (4) Filter the local maxima. (5) Reduce the number of the

global maxima to m points and match the phantom, Fig. 2.6(d).
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Figure 2.6: Sample steps of the segmentation of the calibration phantom. (a) Input
slice, (b) result of the edge detection, the gray-values encode orientations. (c) result
of the circle-Hough-transform respecting the orientation. (d) final positions of the
matching between the local maxima of (c) and the phantom.
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The phase and orientation of the 2D Monogenic signal [34, 128] was used to

perform the edge detection of the second step of the algorithm. The edge detection

was based on the Monogenic phase φ and the orientation θ = arctan(fx/fy). The

orientation-weighted circular Hough-Transform accumulates for every pixel ~x the

pixels of a circle with radius r. Let ~c1, . . . ,~cN be the offsets of these the N points

of the circle,

~ci = 〈r cos

(
2iπ

N

)
, r sin

(
2iπ

N

)
〉 (2.4)

then the accumulated intensity of the edges reads

ACCr(~x) =
1

N

N∑
i=1

{
| cos

(
θ(~x+ ~ci)− 2iπ

N

)
| if sin(φ(~x+ ~ci)) > (1− ε)

0 otherwise
(2.5)

with θ ∈ [0, π] the orientation of the gradient, φ the monogenic phase and ε = 0.05

a threshold accuracy. The accumulator adds 1/N for every pixel on the edge of the

circle, if the orientation on the edge-pixels points to the center of the circle. The

image of the local maxima is computed via,

MAX(~x) =

{
ACCr(~x) if (ACCr ⊕N Euc

r )(~x) = ACCr(~x)

0 otherwise
(2.6)

with ⊕ the morphological dilation and N Euc
r the 2D circular structural element with

radius r (see Sec. 3.2.1). The reduction to them strongest maxima serves to facilitate

the final matching. If the calibration phantom is rigid, this operation must only be

computed for two slices with a sufficient distance in z-direction to derive the 3D pose

and rotation of the calibration phantom. Though if the phantom is deformable, as

for instance the InTable phantom, the coordinates of the rods must be computed

for every slice and subsequently smoothed with a local median operator.

2.3 Segmentation of the volume of interest

The segmentation or definition of the volume (VOI) or region of interest (ROI)

is a common step in nearly all image processing tasks, when structures or shapes

have to be identified. Many different segmentation techniques have been defined

that apply not only to medical images but also for instance to 2D satellite imaging

or photographs [109]. The principal advantage of 3D segmentation in comparison
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to segmentation of 2D images is the increased numbers of local neighbors, which

increases the statistical accuracy. There are however also a number of specific issues,

which arise on (medical) 3D volumes.

• The segmentation of biological shapes is generally a complex task, in partic-

ular when the pathology represents a deviation from the common shape or

texture. The accuracy of the segmentation has often relevant implications for

the diagnosis and the succeeding treatment of the patient. Full automatic and

unsupervised segmentation functions require much higher success rates than

in most non-medical contexts and are thus mostly inconceivable.

• CT volumes contain generally a high noise level, since image quality and pa-

tient’s ray exposure are correlated. That means, the ray exposure has to be the

least possible to maintain just the minimum needed image quality to perform

the required task.

• The low resolution of CT volumes might induce uncertainties at the bound-

ary of the segmented anatomical region. In this case, a non-exclusive fuzzy

segmentation is required, which assigns two or more anatomical regions with

each a given probability to the same voxel.

• CT volumes contain only one band, the gray value information of the HU’s,

which impedes under certain circumstances the detection of areas or borders.

In contrast, areas or borders in color photographs or satellite images are often

detectable in multiple bands.

• Certain image processing tasks become ambiguous when switching from 2D to

3D. The (fine scale) segmentation of the skeleton for instance requires a-priori

assumptions in which case a given portion of voxels has to be reduced to a

plate-like or a rod-like structure.

The planned analysis determines often the actual segmentation technique. For the

analysis of the micro structure of the spongiosa or generally the texture inside an

anatomical region, it is relevant that the volume of interest is representative, co-

herent and large enough to yield statistically significant measures. In most cases a

geometric segmentation with a predefined mask, shaped as a cylinder, box or ball,

is sufficient and recommendable.



26 CHAPTER 2. STANDARD QCT PROCESSING

For measuring quantitative properties of the volume of interest, like the total vol-

ume or the cortical thickness, the entire anatomical region needs to be segmented.

This requires generally more complex and specialized segmentation methods, an

increased effort of time and knowledge about the anatomy. In general, such a seg-

mentation is based on a combination of seed-point placement by the user and iter-

ative automatic adaptations of the volume of interest. The input data needs to be

transformed to a reasonable representation for instance using texture operators in

combination with border detection. Also pyramid approaches are very common that

compute an initial segmentation on a very coarse resolution which is then refined

with every finer resolution. The final segmentation is often based on a 3D mesh of

the boundaries of the anatomical region of interest.

2.3.1 Segmentation by registration

Registration or matching with an atlas is a special case of segmentation, which can

often be performed without further user interaction. By using this procedure, an

already performed segmentation, the atlas or baseline, is rotated, translated and

sometimes distorted to fit the actual volume. Two different kinds are distinguished:

the rigid registration, which consists on rotation and translation only, thus contains

only 6 free parameters and the deformable registration. The deformable registration

contains additionally to the 6 free parameters of the rigid registration a complete

volume of translation vectors for every voxel. Each of these both registration tech-

niques exist in two forms. The registration can either be applied on the volume data

of the current scan or the inverse registration can be applied to the baseline scan.

Similar to the choice of the optimum segmentation technique, also the registration

method depends on the intended purpose of analysis.

The deformable registration of a prototype baseline scan applies for in-

stance as a first step of the segmentation of the entire vertebra into spongiosa, ver-

tical cortex, upper and lower endplate, foramen and so on. Here, the volume data

remains fixed and the anatomical regions are deformed to fit the physical anatomical

locations. It can also be used for the segmentation of follow-up scans of the same

patient, if a segmentation of the baseline scan was already performed and if a change

of the shape or size of the volume of interest is expected, as for instance on children

that are still in growth or for monitoring and measuring cancer.
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The deformable registration to atlas space is the inverse technique of the

aforementioned one. It applies for instance for the registration of MRI volumes of

the brain. Each voxel in the registered volume stands for a predefined anatomical

region. The actual volume data itself is distorted, hence particular voxels become

squeezed or stretched to fit the predefined anatomical regions in atlas space. This

kind of registration allows to apply a voxel-based analysis (VBA) where each voxel

is interpreted as a separate VOI and compared between different patients.

For the analysis of the temporal change of a vertebra, only a single scan has to

be segmented in a traditional way, for instance the baseline scan. The follow-up

scans can then be segmented with a rigid registration of the volume data. A

baseline and follow-up scan can be compared directly on the voxel-level, which allows

for instance to subtract volumes and to compute 2D histograms of the evolution

of the density values. A critical step with this kind of registration is the choice

of the interpolator. Interpolation with the nearest neighbor does not affect the

histogram, however contains the poorest spatial accordance, the trilinear as the other

extreme contains good spatial accordance between baseline and follow-up scan but

decreases the variance of the volume data, since it flattens the local peaks. The B-

spline interpolation can be considered as a compromise of both techniques. Another

technique for avoiding systematic differences between the histogram of the baseline

and the follow-up scan can be the artificial degradation of the baseline image data.

Here a non-trivial random rotation (no multiples of 45 degrees) has to be initially

applied to the baseline scan, using the same interpolator as for the registration of

the follow-up scan.

Rigid registration of the mask applies when the comparison between baseline

and follow-up scan can be performed on a parameter level rather than on the voxel

level. It does not bias the actual image data of the follow-up scan, since it applies

the inverse registration matrix to the volume-of-interest of the baseline scan. Hence,

the histogram of the follow-up scan is not degraded and no explicit interpolation is

involved. Since the rigid registration does not adapt the shape or size of the volume

of interest, only qualitative micro-structural parameters can be evaluated between

baseline and follow-up scan. That means that in particular the total volume or the

cortical thickness is not obtainable. Conversely the robustness of the evaluation of

qualitative parameters like for instance BV/TV is generally superior with a rigid

registration, since it is ensured that the same anatomical locations are compared.
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It is worth to note that all of the mentioned registration techniques are only

applicable if the baseline and the follow-up scan contain a sufficiently high number

of unambiguous landmarks. Hence the registration between two volumes of interest

of noisy spongiosa is only feasible if the image volume contains the entire cortex or

at least a sufficiently large portion of the cortex.

2.4 Microstructural parameters

The computation of microstructural parameters can be subdivided into a low-level

and the high-level image processing part. The low-level image preprocessing aims

to transform the image into a representation to facilitate the computation of struc-

tural parameters. The outcome of certain methods for the computation of bone

characteristics depends only on the preprocessing step. For instance the BMD and

the BV/TV utilize both the same high-level method, the average gray value, though

on different low-level processed volumes. The signal for the BMD is the calibrated

volume while the signal for the BV/TV is the binary representation of the bone.

Three classes of structural methods can be distinguished: the point-wise, the

local and the global parameters.

• Voxel- or point-wise parameters, such as BMD or BV/TV are based on voxel-

counting. Each voxel is considered as an independent unity and spatial rela-

tions and neighborhoods are not considered.

• Local parameters, such as the star-volume, the trabecular thickness with the

thickness-transform method and most of the proposed robust parameters pro-

posed in Ch. 3 are based on a local neighborhood. The preprocessing value

of each voxel results from a local neighborhood, and the information of the

spatial location o each voxel is conserved until the very last aggregation step.

• The strict global parameters are obtained from a transformation or map to

parameter space, such as for instance a histogram, the Fourier transform or

the non-local box-counting fractal dimension. The information of the spatial

location gets lost but information of the spatial or structural relations of all

voxels are contained in parameter space. The direct secant method is an

example of such a global method, it uses the histogram of the mean intercept

lengths as its parameter space. The structural parameter is generally derived
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Figure 2.7: Most important morphometric methods and derived quantities. Bold
measures are relative measures that apply for the characterization of bone health.
The structure model (SM) relates BS/BV, Tb.N, Tb.Th and Tb.Sp.

as the average or median over this histogram. It is worth to note that any

global method can serve as a local texture parameter by computing the global

parameter for each voxel on a separate locally restricted VOI.

The three classes of methods have in common the final aggregation of the ob-

tained measures to one scalar value per VOI, the global micro-structural parameter.

Figure 2.7 shows the relation of the proposed methods and obtainable structural

parameters which are originally defined for HRpQCT resolution. Some particular

structural parameters (e.g. Tb.Sp or BS/BV) can be derived from multiple methods.

The next subsections contains a formal definition of global parameter, Sec. 2.4.1

and of the conduction of the binary representation of the volume, Sec. 2.4.2. Then,

the standard methods are reviewed, Fig. 2.7. Some further information of the actual

implementation is provided in the chapter about the computer program Structural

Insight, Ch. 4, in particular in Sec. 4.4.

2.4.1 Global parameters

A microstructural parameter is mathematically a scalar value which describes a

certain property of the VOI. The particular nature of each parameter is defined by

(1) a specific preprocessing, which generates a distribution, and (2) an aggregation

method that extracts a certain characteristic from the distribution. Let si ∈ R be

the local signal and wi ∈ R≥0 a weighting of each item si. Formulas for the linear

operators are based on weighted cumulants [107]. First, the following parameters
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are defined,

Wp =
∑
i

wpi and (2.7)

Sp =
∑
i

wi s
p
i . (2.8)

Now, the first two weighted cumulants read

K1 = S1/W1 and (2.9)

K2 = (S2W1 − S2
1)/(W 2

1 −W2). (2.10)

The nonlinear operators are computed from weighted quantiles. Let ξ(1) . . . ξ(N)

a labeling of the indices, which induces an ascending sorting of the values si: ∀i ∈
{1, . . . , N−1} : sξ(i) ≤ sξ(i+1). The weighted quantile at a given percentile Pr ∈ [0, 1]

reads now:

QPr = sξ(j) :

j−1∑
i=1

wξ(i) < Pr/
N∑
i=1

wi ≤
j∑
i=1

wξ(i) (2.11)

From the definitions above, the following global parameters can be extracted:

• the weighted average,

AVG(s, w) = K1 (2.12)

• the weighted standard deviation,

SD(s, w) = K
(1/2)
2 (2.13)

• the weighted coefficient of variation,

CV(s, w) = K
(1/2)
2 /K1 (2.14)

• the weighted median,

MED(s, w) = Q50% (2.15)

Under the condition ∀i, j : w(i) = w(j) > 0, these global parameters become un-

weighted and are in this work expressed as AVG(x), SD(x), MED(x) and so forth.
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Additionally the minimum and maximum are always independent of w,

min(s, w) = Q0% = min(x), (2.16)

max(s, w) = Q100% = max(x). (2.17)

2.4.2 The bone map

Most standard micro-structural parameters need a volume containing the likeliness

or segmentation of each voxel belonging to bone or marrow. The map which reflects

the bone membership is called Bone(~x). It is typically achieved by applying a

transfer map to the input volume V. The simplest form of defining Bone is the

application of a crisp threshold t,

Bonet(~x) =

{
1, if V(~x) > t

0, otherwise
(2.18)

with V mostly but not necessarily expressed in density values VDV. The optimum

choice of t is in practice often an issue [48]. The global threshold is the simplest one,

but there exist more sophisticated techniques to map V to {0, 1} [142]. A probability

function obtained with a crisp threshold contains only two states: 1 for bone and

0 for marrow but it can be generalized to a fuzzy threshold or a real probability

function Bone ∈ (0, 1), for instance by applying a sigmoidal membership function

using the cumulative normal distribution,

Bone(t,σ)(~x) = Φt,σ(V(~x)) =
1√

2σ2π
exp

(
−(u− t)2

2σ2

)
du (2.19)

where t is the value where Bone is 0.5 and σ ≥ 0 is the fuzziness factor. Figure 2.8

shows the application to a CT scan for t at the 75% quantile and different choices

of σ. For σ →∞, Bone approximates the linearity,

Bone(t,σ→∞)(~x) ≈ 0.5 +
V(~x)− t√

2πσ2
. (2.20)

This condition can be generalized, hence Bone is always “quasi linear” in the interval

[t− σ, t+ σ], see Fig. 2.8. For σ > 0, the original density map can be reconstructed

with the inverse cumulative normal distribution Φ−1, hence the fuzzy transform does
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Figure 2.8: Application of the sigmoid function Bonet,σ with t the BMD and varying
σ, a) Bone(BMD,0), b) Bone(BMD,SD), c) Bone(BMD,6 SD). Rows: 1) transversal view,
2) coronal view, 3) histogram (blue) and cumulative histogram (red) of Bonet,σ, 4)
map between DV’s and Bonet,σ.

not discard any information,

V(~x) = Φ−1t,σ(Bone(t,σ)(~x)). (2.21)

At the singularity σ = 0, the map becomes the classical crisp binarization, which

cannot be anymore reconstructed,

Bone(t,0)(~x) = Bonet(~x). (2.22)

The value σ defines the difference between the energy of the noise at t and vs.

values with an higher offset to t. The correct definition of σ is steered by two
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opposed mechanisms, by decreasing σ, the apparent probabilities of Bone become

more certain, hence closer to 0 or 1, by increasing σ, the trueness of the signal Bone,

in particular at t, increases while meanwhile less voxels contain a clear membership

to either bone or marrow.

In practice it is important to chose the values of t and σ with care. Sometimes,

in particular when dealing with group studies (compare Ch. 3), separate values of

t and σ might apply to each site. One might also define t in terms of the average

quantile instead of a fixed density. If VDV was derived with a global calibration,

Bone can be likewise computed on VHU or VDV, with t and σ respectively expressed

in HU or in mg/cm3.

Since defining Bone by transfer functions only does not incorporate local texture

information, differences of the point-spread function are not treated. This implies

that increasing the threshold lowers the Tb.Th but disconnects simultaneously the

bone phase. The following subsections discuss approaches to avoid a disconnection

of the bone phase.

2.4.3 Voxel counting

The voxel counting method (VC) extracts structural information without modeling

relations between adjacent voxels. The direct measures obtained with this method

are the the bone mineral density, the bone volume ratio and tissue mineral density.

The bone mineral density reads

BMD[mg/cm3] = AVG(VDV), (2.23)

the bone volume ratio reads

BV/TV[cm3] = AVG(Bone) (2.24)

and the tissue mineral density reads

TMD[mg/cm3] = AVG(VDV,Bone). (2.25)
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From the measure total volume (TV)

TV[cm3] = |~x| =
∑
~x

∏
εi, (2.26)

and the voxel spacing ~ε = 〈ε1, ε2, ε3〉. The following quantitative measures can be

computed: bone mineral content,

BMC[mg] = TV BMD =
∏

εi
∑
~x

VDV(~x), (2.27)

bone volume,

BV[cm3] =
∏

εi
∑
~x

Bone(~x) (2.28)

and tissue mineral content,

TMC[mg] = BV TMD =
∏

εi
∑
~x

VDV(~x)Bone(~x). (2.29)

For parameters that use Bone, generally a crisp threshold in mg/cm3 is used, for

instance Bone200, but also fuzzy threshold functions are possible, Bone(200,100).

2.4.4 Marching Cubes

The marching cubes method (MC) [78, 21] is an alternative method to access the

bone volume, it yields additionally the model independent bone surface (BS) and

can be used to get insights of the structure model with the structure model index

(SMI) [53] or trabecular bone pattern factor (TBPf) [47]. MC transforms the voxel

representation into a polygon mesh. An object of the polygon mesh is defined by 8

voxels taking into account the 8 phases and their local density. The authors of the

original paper stated 15 different configurations, how the boundaries can be aligned

in the polygon objects, see Fig. 2.9. The exact positions of the triangles inside the

cubes are defined by the actual BV/TV’s of the 8 voxels. The BS and the BV

determined by this method appear more natural (see Fig. 2.10 adapted from [88]).

The BS is already smoother in the MC-representation, Fig. 2.10 b), but to assess an

optimal representation, the triangle mesh needs to be smoothed with an a-posteriori

smoothing operation, which minimizes the energy at the corners of the triangles.

This improves the BS and as well the BV, but can also suppress high frequency
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Figure 2.9: Original published 15 prototypes of the Marching Cubes algorithm. The
actual position of the triangles is derived by linear interpolation between adjacent
local BV/TV’s.

information, if too many iterations are applied. An extension of this method uses

33 prototypes by dividing some of the 15 prototypes into sub-cases depending on

the actual BV/TV’s, [21].

The Bone surface generated with MC is dependent on the scale. Small details are

erased during the iterative smoothing operations or absent due to too low effective

resolution. Cipoletti et al. [23] introduced a method to apply a fractal extrapolation

to the estimation of the boundary of a 2D structure by examination of the fractal

slope of the results of down-sampled representations. This approach can also be

applied to 3D.

2.4.5 Direct secant method and run-length method

The direct secant method (DSM) [98, 122] computes the distribution of intercept

lengths, which defines the mean intercept length (MIL) and degree of anisotropy

(DA). In combination with a model of the structure model, for instance parallel

plate model (PPM), one can also derive the Tb.Th and Tb.Sp. The DSM uses a

parallel grid of search rays intersecting the VOI. The compound phases of bone or

marrow on the search rays are summarized to pθ. The lengths of the search rays

are summarized to lθ, both for a set of examined orientations θ1, . . . , θn. Every
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Figure 2.10: Comparison of the BV with voxel counting and marching cubes. The
three images show one sample meshed in different ways: a) the mesh shows the
voxels of the samples, b) simple triangulation of the surface, c) same as b) but
smoothed with 2 iteration steps.

orientation defines a mean intercept length (MILθ):

MILθ =
lθ
pθ

(2.30)

The Tb.Di is the average of all MIL’s:

Tb.Di =

∑
θ MILθ
n

(2.31)

and the Tb.N is its reciprocal, when using the parallel plate model:

Tb.N = 1/Tb.Di. (2.32)

The different examined orientations to configure a nearly regular grid on the surface

of a unit sphere and were achieved from [50]. To prevent a bias induced by the size

of the VOI, the method can be modified as follows: The examined rays do not start

just inside the VOI but outside at the next phase change. The first line segment,

which is cutting the VOI contributes to the length lθ and the phase sum pθ only with

the ratio of voxels, which lay inside the VOI. The run-length method (RLM) [30] is

a variant of the direct secant method, which does not only count the phase changes

and the complete length of the ray but instead the lengths of the all line-segments
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Figure 2.11: Distance transform method: The sphere N Euc
k (~c) is entirely contained

in the bone phase Bone. The thickness at ~x is 2 k since the depicted sphere with
radius k and center ~c is the maximum possible sphere that contains ~x.

of the marrow or bone phase. The histogram of the marrow phases follows a power

law and the Tb.Sp is defined as the median. The same can be done for Tb.Th.

2.4.6 Distance transform method

The Distance transform method (DT) was introduced by Hildebrand and Rüegsegger

[54]. It is defined for µCT resolution and assumes a binarization of the 3D volume.

This method is the most widely used method for estimating thickness on segmented

images because it is model independent and intuitive. It serves to calculate the

Tb.Sp and Tb.Th. The bone and marrow phase are separately analyzed. The

Tb.Sp is locally calculated for every point ~x of the marrow phase as the diameter

of the largest sphere which fits in the marrow space and contains ~x. Note that

the center ~c of this largest sphere N Euc
k can differ from the examined point ~x, see

Fig. 2.11,

Th(~x) = 2 max{k|||~c− ~x||2 < k,N Euc
k (~c) ⊆ Bone}. (2.33)

The authors of the original paper use the Euclidean distance transform to generate

the thickness representation from the binary phase image Bone:

• Create an Euclidean distance transform DT of the binary volume Bone.

• Initialize a thickness map Th with zeros.

• Compute the local thickness for every voxel:

∀~c ∈ Bone ∧ ∀~x ∈ N Euc
k DT(~c) : Th(~x) = max(Th(~x), 2 DT(~c)). (2.34)
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• Aggregate the local thickness for the entire VOI in one structural variable

Tb.Th:

Tb.Th =
∑

~x∈Bone

Th(~x)/BV (2.35)

The same method is used to compute the Tb.Sp, but by replacing Bone with 1 −
Bone. Improvements of that method can be achieved by up-sampling the volume

with a factor of 2, because the distance transform calculates the radius but not the

diameter. This method is defined for binary images, and does not take into account

any noise treatment, which makes it problematic to apply this method directly to

HRQCT images.

The distance transform method is used for two settings, the computation of the

cortical thickness and the computation of cancellous parameters. The computation

of the cortical thickness uses only the segmentation mask, thus does not require a

threshold, while the segmentation into bone and marrow on the spongiosa is derived

from the threshold binarization. Additionally to the standard parameters of the

distance transform method, Graeff suggests a weighted thickness and separation at

every voxel [46]:

wTh(~x) = Th(~x) (VDV(~x)−DVMarrow)/(DVBone −DVMarrow) (2.36)

wSp(~x) = Sp(~x) (DVBone − VDV(~x))/(DVBone −DVMarrow) (2.37)

with Th the thickness transform of a voxel of the bone phase, Sp the thickness

transform of a voxel of the marrow phase and DVBone = 1200mg/cm3 the density at

full mineralization and DVMarrow = 0mg/cm3 the density of marrow tissue. Finally,

the average and standard deviation over all values inside the VOI are computed.

Alternatively to wTh and wSp, the sigmoidal bone membership Bone(t,σ) can be

used as the weighting function:

wTh∗(~x) = Th(~x) Bone(t,σ)(~x) (2.38)

wSp∗(~x) = Sp(~x) (1− Bone(t,σ)(~x)) (2.39)

Extensions of the distance transform method

The fuzzy distance transform [113] is an alternative to the Euclidean distance trans-

form. It can be meaningful to replace the straight Euclidean distance with the fuzzy
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distance, if the roughness of the surface shall be included or the object boundaries

are weekly defined [127]. As the boundaries of the bone phase are uncertain, the

obtained parameter is the trabecular distance (Tb.Di) rather than the trabecular

separation Tb.Sp (Tb.Di = Tb.Sp + Tb.Th). In this context, the fuzzy distance

transform has been used for the computation of the trabecular distance from an

initial hard skeletonization [26], and alternatively to compute a thinning of the bone

structure [71], thus replacing an Euclidean skeletonization.

The granulometric distance transform was suggested by Moreno et al. [90]. The

first 3 steps of the DT-algorithm are equivalent to the result of an morphological

opening procedure with 3D spheres as structure elements. As the morphological

opening is not only defined for binary volumes but as well for gray-value volumes, it

is possible to calculate the Tb.Sp direct on the texture. The so derived Tb.Sp is a

fuzzy Tb.Sp, which is not induced by the fuzzy distance transform but instead a fuzzy

version of the Euclidean distance transform: Every point is assigned a distribution

of memberships by Euclidean distances. The non-fuzzy approach generates only one

(maximal) distance, which owns the assigned membership of one. Here every point

owns a large number of distances, thus the thickness map Th (compare Eq. 2.33)

becomes 4 dimensional, rendering this algorithm more complex to understand and

in terms of run-time.

The distance transform was also modified by using anisotropic Euclidean dis-

tances [29]. Instead of fitting the maximum sphere inside the bone phase, ellipsoids

with the maximum volume are fitted. This allows to extend the number of derived

structural parameters to local anisotropy measures, which relate the moduli of the

3 principal axes λ1 ≥ λ2 ≥ λ3 of the ellipsoids to each other, for instance

Degree of anisotropy = λ1/λ3 ∈ [1,∞) (2.40)

Isotropy index = λ3/λ1 ∈ [0, 1] (2.41)

Elongation index = 1− λ3/λ1 ∈ [0, 1] (2.42)

However, this method is at least as sensitive to noise, as the original distance trans-

form method, hence not yet applicable to clinical CT.
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2.4.7 Further standard methods and issues

Another method to obtain Tb.Sp and Tb.Th is the star volume method, which

follows a similar idea than the distance transform, but obtains the distance measure

only over some angles. Euler characteristics and the box counting dimension are also

implemented, though not standard in the literature. A list and a short description of

the standard methods can be obtained from http://bruker-microct.com/next/

CTAn03.pdf, http://bonej.org/ and from [98, 46, 49].

Sometimes a specific resampling method for CT volumes is used [57]. This

method upsamples the volume to a sufficient high isotropic resolution, such that

every voxel has a full or void mineralization. It is designed for the case of having

only two different phases: bone and marrow. A voxel is iteratively split into 8 sub-

voxels, with the information of the 27-neighborhood. This method was for instance

used as a preprocessing step of a 3D skeletonization [112].

The central issue of standard methods is their generally poor performance on

clinical in-vivo data since the early application of the threshold discards an impor-

tant portion of information. When applying the standard methods to clincal QCT,

the structural fine scale frequencies cannot be assessed. Hence, only parameters

that are defined for coarse scale frequencies, for instance the BMD, are computable.

Structural parameters require certain techniques to either recover or extrapolate

the fine scale frequencies [23, 57]. Some of those approaches are developed in the

following chapter. Alternatively, the reconstruction from the obtained CT data in

Radon space to spatial domain can be improved.

2.5 Reconstruction techniques

Iterative reconstruction methods are an alternative to the standard reconstruction

with filtered back projection. While iterative reconstruction methods have been

applied to chest and lung scanning [64], only few studies have yet been conducted

to investigate the importance for the computation of micro-structural parameters

[11, 14].

Figure 2.12 shows the data obtained for an ongoing study on that issue. The

filtered back projection with increased exposure is used to obtain the ground truth

structural information. Different iterative reconstruction methods, implemented by

Philips and Siemens will be investigated, some of these iDose 1 and 5 or IMR 1-2P

http://bruker-microct.com/next/CTAn03.pdf
http://bruker-microct.com/next/CTAn03.pdf
http://bonej.org/
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Figure 2.12: Iterative reconstruction methods for a HRQCT scan with 120 kV:
filtered back-projection with 500 mAs (FBP 500), iterative reconstructions for same
vertebra but 360 mAs: Philips iDose 1 and 5, iterative model reconstructions (IMR),
type 1-3 P, 1-3 R and 1-3 S.
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seem to maintain the structural information by simultaneously suppressing noise,

while others IMR 1-3S and IMR 1-3R suppress not only noise but discard also

significant portions of the structural fine scale information.



Chapter 3

Robust microstructural CT

parameters for in-vivo data

The computation of microstructural parameters from clinical volumes contains sev-

eral issues. If several patients are compared in a group study, the obtained parame-

ters must be invariant of systematic changes in between the obtained cases. Sources

of systematic differences between CT volumes can be due to different problems:

• In hospitals, the used CT scanners are periodically replaced with new mod-

els. The new CT scanners contain generally not only improved mechanical

parts but often also improved reconstruction software, such as the availability

of iterative reconstruction algorithms. These aspects not only provide more

comfort to the radiologists and patients but also improve the quality of the

obtained data in terms of decreased noise and increased effective spatial and

frequency resolution. While these improvements are beneficial for the ad-hoc

analysis of patient data, it might impair the ability to compare data obtained

with the former scanner.

• When the same CT scanner is used for the entire study-data it is common that

small changes of the scan and reconstruction protocols involve large implica-

tions for the computed microstructure parameters. For instance differences in

ray exposure, voltage, table height, and variations of the reconstruction ker-

nels imply differences of the noise level. Changes of the spatial resolution (or

field-of-view) change the range of the obtained frequencies and thus also bias

most of the microstructure parameters.

43
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• The preparation of the patient or specimen also influences the obtained image

quality: the image quality of a particular slice decreases if that slice contains

more physical material, or if the ray on its way through the volume passes

many edges. The image quality of an in-vivo scan of the T12 increases if the

patient puts his arms over his head during the scan. Bolus bags serve to fill

eventual free gaps between the lounger and the body or specimen. Finally,

different noise levels can be observed between obese and thin persons.

• The calibration phantom can be another source of impairments. Firstly, differ-

ent calibration phantoms or different calibration substances imply also differ-

ences in the obtained density values. Secondly, the physical distance between

the calibration phantom and the VOI biases the calibration, this is sometimes

corrected with the field-uniform correction (FUC). Finally, the kind of cali-

bration (global vs local calibration or manual vs automatic calibration) might

also be a source of differences between scans.

There are basically two concepts that deal with the compensation of differences

between obtained scans. With adequate preprocessing methods, the volumes can

be elevated to a common noise and resolution format. The obtained microstructure

parameters contain then a similar resolution and noise spectrum and hence gain

comparability between each other.

The other approach deals directly with a (re-)formulation of the microstructural

parameters. Parameters that base on scale-space or fractal methods are known to

be robust against resolution issues. Also robustness against noise or against blurring

can be obtained by incorporating particular information of the noise spectrum or

the point-spread function. First, the used volume data is presented in Sec. 3.1,

then the principal concept of local parameters is explained in Sec. 3.2. Methods

of CT-preprocessing are discussed in Sec. 3.3. The next two sections describe two

different approaches for the computation of the rod-volume- or plate-volume-fraction

ratio. The first approach, Sec. 3.4, uses 3D rose diagrams and the second uses a

local fractal dimension, Sec. 3.5. Finally, a direct application of the local texture

descriptors is presented, using instead of CT volumes magnetic resonance volumes,

Sec. 3.6. This allows the direct application of a voxel-based analysis without the

need of an a-posteriori global aggregation method.
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Figure 3.1: a) Simulated in-vivo scan: the vertebra phantom is embedded in the
abdomen phantom with body ring (quasi in-situ). The calibration phantom enables
to achieve the density values, b) reference ex-situ scan: the vertebra phantom is
scanned without abdomen phantom (quasi ex situ).

3.1 CT volumes and statistical methods

The experiments of the CT-method were tested on two data-sets: one to analyze ro-

bustness of the proposed methods in terms of precision and accuracy and the second

to predict the experimentally derived maximum failure load Fexp (experimentally de-

rived force). A third in silico data was used to tune the developed parameters. It

allows to vary the noise and knowing the exact ground-truth structure.

3.1.1 The vertebra phantom

The conducted experiment serves to analyze robustness of the proposed methods in

terms of precision and accuracy. It allows to analyze the noise of a specific setting

and as a function of body size and ray exposure.

Five human T12 vertebral specimens were harvested from deceased donors, sur-

rounding soft tissue and marrow was removed and the vertebrae were then embed-

ded in epoxy resin (Technovit Epox, Heraeus Kulzer GmbH, Hanau, Germany). The

vertebrae were obtained from the anatomical institute of the Christian-Albrechts-

University at Kiel, Germany and the department of legal medicine of the University
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Hospital Hamburg-Eppendorf, Germany. The vertebra phantoms were inserted in

an abdomen phantom (Model 235, Computerized Imaging Reference Systems Inc,

Norfolk, VA, USA) and repeatedly scanned with different settings in a clinical CT-

scanner (Somatom Sensation 64, Siemens AG, Forchheim, Germany), thereby simu-

lating different in-vivo conditions. Two protocols, a high-resolution (355 mAs) and

a standard resolution (140 mAs) were applied, both with 120 kVp and voxel size

188× 188× 300µm3.

Each setting was repeated 3 times with the abdomen phantom and additionally

2 times by using both, the abdomen phantom and the body ring, resulting in four

different noise regimes and ten repeated scans per VOI. Taking only the 3 scans

without body ring gives insight into the systematic variance induced by noise of the

HRQCT or QCT setting. The second setting with additional body ring simulates

the in-vivo noise of obese patients, see Fig. 3.1. The 5 scans together enable to

measure changes of body size, which applies for long-term studies that last several

years. The complete 10 scans can be used to analyze the impact of all variables:

change of patient size and change of noise characteristics. This is also medical reality

since long term studies are often performed on different scanners, with different noise

characteristics, since the hospitals regularly replace old scanners with new models.

All scans contained a nominal anisotropic voxel resolution of 188×188×300µm3.

It is worth to note, that the effective resolution is much lower at a level of 500×500×
500µm3, depending on the protocol, thus spongeous bone could not be resolved until

1 voxel on these typical HRQCT in-vivo scans. A CT calibration phantom (Model

3, Mindways Software, Austin, Texas, USA) was included to derive mineral values

in mg K2HPO4 scale. Four equally sized disjoint spongeous VOIs (volume ≈ 1.1

to 1.7cm3 = 1.02 to 1.64 × 105 voxels) were manually placed in one scan of each

vertebra and automatically registered to the nine remaining scans. This sample size

allows to derive statistical significant precision estimates [40].

Two reference ground-truth scans were performed, one on the clinical CT scanner

and one on a HRpQCT scanner. Both were performed with increased ray exposure

and without abdomen phantom. The clinical CT scan was performed on the same

scanner and with the same calibration technique as the other QCT scans, but with

140kV and 360mAs and with voxel size 137 × 137 × 300µm3. This scan shows the

maximum obtainable information with the CT scanner, thus with very low noise

but still with the absence of a certain part of high frequency information due too
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Figure 3.2: Ray casting volume rendering of (a) HRQCT scan (120 kV, 355 mAs)
with one of the four VOIs, and (b) HRpQCT scan of the same specimen.

Figure 3.3: Calibrated and registered scans of a sample specimen (sample 5c): a)
Ground truth (1), b) Ground truth (2), c) Standard HRQCT, d) Standard QCT.

the voxel resolution. HRpQCT scans of each vertebra phantom were obtained on

a XCT scanner (XCT I, Scanco Medical AG, Bassersdorf, Switzerland, voxel size

82 × 82 × 82µm3, 59.4kV and 900mAs), but calibrated to a distinct mineral scale

[mg CaHA] and with the implemented software of the XCT device, details of which

were published elsewhere [130, 102]. The reference scans were automatically regis-

tered to obtain the same VOIs of the QCT scans. The registration and calibration

of the QCT data was performed with Structural Insight (v3, Biomedical Imaging,

University of Kiel, Germany).

The different settings are listed in table 3.1 and the visual differences are depicted

in Fig. 3.3.



48 CHAPTER 3. ROBUST PARAMETERS

Name Mod Voltage Exposure Resolution A/B Rep
Ground truth (1) HRpQCT 59.4kV 900mAs 823 µm3 - 1
Ground truth (2) HRQCT 140kV 360mAs 1372 × 300 µm3 - 1
Standard HRQCT HRQCT 120kV 355mAs 1882 × 300 µm3 A 3
Obese HRQCT HRQCT 120kV 355mAs 1882 × 300 µm3 A,B 2
Standard QCT QCT 120kV 140mAs 1882 × 300 µm3 A 3
Obese QCT QCT 120kV 140mAs 1882 × 300 µm3 A,B 2

Table 3.1: Performed scans of each vertebra phantom: name, modality (Mod),
voltage, exposure, nominal resolution, with abdomen phantom (A), with body ring
(B) and number of repetitions (Rep).

3.1.2 Assessment of precision and accuracy

To measure the performance of structural parameters or pre-processing methods,

such as adapted thresholds, the precision and accuracy are computed. The precision

of one parameter is obtained as the normalized short-term precision for repeated

scans (STP) [40],

STP =

√ ∑N
i=1

∑M
j=1(xij − xi)

N(M − 1)(maxi{x̃i} −mini{x̃i})2
, (3.1)

with N = 20 the number of VOIs, M = 10 the number of repeated scans per VOI,

xij the structural parameter at VOI i and scan j, xi its arithmetic mean, and x̃i the

median at VOI i.

The accuracy is obtained in terms of the long-term precision (LTP), which relates

the QCT or HRQCT structural parameter (x) with the parameter computed on the

ground truth volumes (y). Again, to allow comparison between parameters, this

parameter was normalized by the range in ground truth domain,

LTP =

√ ∑N
i=1(yi − ŷi)

(N − 2)(maxi{yi} −mini{yi})2
, (3.2)

with ŷi = a+ bx̃i the linear estimate of yi from the QCT.

The statistic STP is identical with the normalized root-mean-square deviation

and gives insight into the precision and reproducibility of the technique. The statistic

LTP is the normalized root-mean-square error of the fitted data and gives insight

into the accuracy and thus to estimate the ground-truth. The original names of
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the not normalized parameters[40] are SD and SEE, but they are renamed here to

avoid confusion with the standard deviation (SD). The sample size and the number

of repeated scans were sufficient to claim statistical significance at a level considered

appropriate for characterizing STP and LTP [40].

Statistical significance of the improvement between two techniques (a and b)

which compute the same micro-structural entity can be obtained with Fisher’s r-to-

Z transform. Let xaij be the measurement on the QCT or HRQCT data on VOI i

and repeated scans j using method a and xbij the same measure, but obtained with

method b.

• The improvement of the precision between two techniques a and b is obtained

from an one factorial ANOVA analysis. The nominal variable of the groups i

is related with the parameters xij. Hence yielding R2
a on i vs. xaij and R2

b on i

vs. xbij respectively.

• The improvement of the accuracy between xaij and xbij in relation to a ground

truth measure yi is obtained from linear regression analysis. Hence the ground

truth data yi is expressed as a function of the groups medians x̃i. This yields

R2
a from yi vs. x̃ai and R2

b from yi vs. x̃bi , respectively.

In both cases of computing either the accuracy or the precision, the inverse one

sided p-value that R2
a > R2

b is computed as:

p(R2
a, R

2
b) = 2Φ

(
−

arctanh
√
R2
a − arctanh

√
R2
b√

2/(N − 3)

)
, (3.3)

with N the number of VOIs, which are in this study 5vertebrae · 4VOIs/vertebra =

20, and Φ the cumulative standard normal distribution. R2
a is significant higher than

R2
b if p < 0.05.

3.1.3 The Bioasset study

The second experiment was derived out of a larger ex-situ study (BioAsset[41]) per-

formed in total on 33 deceased patients who had osteoporosis. Each spinal specimen

contained three vertebrae (T11, T12, L1) and their respective intermediate inter-

vertebral discs. The vertebrae were scanned and calibrated with the same HRQCT
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Figure 3.4: (a) Experimental set up to derive the failure load and (b) HRQCT
BioAsset scan with Pacman-shaped VOI to compute structural parameters.

procedure as used for the vertebrae phantoms, but segmented with one Pacman-

shaped VOI per vertebra. HRQCT data of 76 vertebrae remained after excluding

not sufficiently large VOIs. Data of the experimentally derived maximum failure

load Fexp at T12 were experimentally derived from a subset of 20 patients [81].

The spinal segments were fixed to a servohydraulic testing machine (Bionix 858.2,

MTS Systems, Eden Prairie, MN, USA). After preconditioning, a quasistatic uni-

axial compression (6 mm/min) with a 4◦ flexion angle was applied on each spinal

segment until resulting failure of the middle vertebral body (T12). Further details

of the loading can be found elsewhere [80]. Seventeen T12 vertebrae remained for

correlations between Fexp and HRQCT parameters after excluding those with an

insufficient size. Figure 3.4 shows a sample CT volume and the set up to derive the

maximum failure load. Also HRpQCT scans were obtained [41, 81] but not analyzed

in this study.

3.1.4 Prediction of failure load

Since BMD has generally the highest correlation with the maximum failure load

Fexp, the interest regarding this experiment is, which linear combination of ad-

ditional micro-structural variables improves eventually the correlation with Fexp.

Thus, the optimum linear models for the prediction of Fexp were derived from BMD
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Figure 3.5: Steps for the generating of CT-like noise conditions with SNR = 11.7
(a) Noise-free input volume, (b) sum of input volume and noise,(c) noisy volume
after blurring, (d) binary noisy volume.

in combination with up to four structural parameters. The adjusted coefficient of

correlation (adj. R2) and root-mean-square error (RMSE) were computed to assess

the quality of the model for a given number of parameters.

The Aikaike corrected information criterion (AICc) was applied to compare

among models with different numbers of parameters and to select the best model.

The AICc is superior to the Bayes information criterion [18] and more widely applied

for those analyses [2]. The gain of information between two models can be assessed

by the relative likelihood

p(m1,m2) = exp

(
AICc(m1)− AICc(m2)

2

)
, (3.4)

with m1 and m2 the models. An F-test p(F) was used to detect significant different

correlations between models.

3.1.5 In silico data

The in silico data is used to investigate the robustness of the local parameters in

relation to varying resolution and noise. The test volumes are generated in 3 steps:
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(1) The ground truth V is defined by placing rods and plates of defined orientations

and thicknesses. The background contains zeros, and the bone material contains

ones. (2) Gaussian random noise η with standard deviation σ is added to the

volume,

Vη(~x) = V(~x) + ση. (3.5)

(3) The noisy volume is convolved with the Gaussian,

Vblur(~x) = AVGNGauss
k

(Vη; 1; ~x). (3.6)

The radius k of that Gaussian defines the resulting spatial resolution. Figure 3.5

shows the three described steps and additionally the noisy binary volume. By vary-

ing the parameter σ and k, different noise settings can be produced. The signal-

to-noise ratio of the binary volume H(V(~x) − t) with H the Heaviside function, is

computed by

SNR(V,V′) =

∑
~x 1− |H(V(~x)− t)−H(V′(~x)− t)|∑
~x |H(V(~x)− t)−H(V′(~x)− t)|

. (3.7)

with V the ground-truth and V′ a test signal.

3.2 Neighborhood operators

Local operators, which use a local neighborhood are often used for image/volume

enhancement to enhance the images or volumes for the computation of the mi-

crostructural parameters. The processing with a local neighborhood, defined by a

mask, can serve for different specific tasks and can use different techniques, such

as convolution or morphology. Isotropic masks are often used for processing 2D

images but almost never apply to medical 3D imaging, since the voxel resolution in

CT or MRI images is generally anisotropic. Furthermore, classical unweighted and

unscaled 3D neighborhood-relationships with for instance 6, 14 or 26 neighbors are

a poor choice if image quality is less than optimal and if the relation between voxel-

resolution and contained information is anisotropic. Some common preprocessing

methods, based on neighborhood operators, are
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• Binarization of the data into bone and marrow phase serves for the compu-

tation of nearly most structural parameters, methods can be based on fixed

or Ostu-thresholding but also on the (neighborhood based) Monogenic signal.

• Computation of the local trabecular thickness when performed with model

independent method. The step, where the distance transformed volume is

mapped to the actual thicknesses uses structural elements of varying sizes.

• Thinning and skeletonization aims to find the ridges of the bone and to

derive structural parameters as the rod volume or plate volume.

• Resampling can be used to generate isotropic nominal resolution, which gen-

erally allows the application of simpler structural parameters, see [57].

• Energy minimization with the Ising model, median or morphological

filtering serve among others to remove image artifacts and noise.

Further examples of local preprocessing methods, that are not enhancing the

data, but mapping the data to other spaces, are

• Tessellation with marching cubes allows to compute alternative measures of

the bone volume and can be used for the structure model index.

• Assessment of the local anisotropy based on the star volume and rose dia-

grams.

• The local fractal dimension aims to access texture parameters and can be

adapted to compute the rod- and plate-volume or the trabecular thickness.

3.2.1 Structural elements

The term structural element refers in this thesis to masks with positive entries,

defining the membership of the neighboring voxels for the computation of local

characteristics. Please note that following this definition, in particular the center

voxel is part of its own neighborhood. Examples of isotropic not scalable 3× 3× 3

neighborhoods are the one that shares a common side with the center voxel NVox
7 ,

the one that considers all neighboring voxel with a common edge NVox
19 , and the one
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that activates all neighboring voxels with a common corner NVox
27 ,

NVox
k (~c|cx, cy, cz ∈ {−1, 0, 1}) =

{
1, if |~c| ≤ √ak
0, otherwise

, (3.8)

with ~c a 3D-offset in voxel coordinates, |~c| its Euclidean norm, and a7 = 1, a19 = 2

and a27 = 3. These fixed structural elements are not scalable and thus have very

limited applications.

Scalable structural elements

Some structural elements are proposed, which are used for the computation of the

thinning operator and other local characteristics, introduced later. In particular for

the computation of the local fractal dimension (Sec. 3.5) the n-dimensional structural

element must fulfill the following two requirements:

• The structural element must be positive:

∀~c : N(~c) ≥ 0 (3.9)

• In n dimensions, the total mass must grow with the n’th power of the radius

k. ∑
~c

Nk(~c) <
∑
~c

Nk+δ(~c)→
log
∑

~cNk(~c)− log
∑

~cNk+δ(~c)
log(k + δ)− log(k)

∼= n (3.10)

In literature, different structural elements are used, the discrete structural element

Nmetr
k reads:

Nmetric
k (~c) =

{
1, if ||~c||metric < k

0, otherwise
(3.11)

where “metric” denotes the metric and k the radius. The simplest structure element

is the box (or cube in 3D) N∞k , which finds application, though in different form,

in the box-counting fractal dimension. This structural element is often used for the

computation of the fractal dimension, since it is separable. Though, the main dis-

advantage of N∞k is its missing rotational invariance. Spherical or point symmetric

structural elements are generally not separable. The discrete version of the spherical

structural element uses the Euclidean metric N Euc
k .



3.2. NEIGHBORHOOD OPERATORS 55

In the case of continuous structural elements, condition Eq. 3.10 can be hardened

as

∀δ > 0 :
log
∑

~cNk+δ(~c)− log
∑
Nk(~c)

log(k + δ)− log(k)
= n, (3.12)

thus the growth of the total mass is directly observable for every change in k, which

implies in particular ∀δ > 0 :
∑
Nk+δ >

∑
Nk. The continuous version of the

spherical structural element N Sphere
k models also the point symmetry more precisely

than its discrete counterpart:

N Sphere
k (~c) =

3∏
i=1

1

εi

∫∫∫ ~ε

0

N Euc
k (~c− ~ε/2 + ~ψ) d~ψ. (3.13)

where ~ε is the voxel spacing or diameter of one voxel.

The Gaussian structural element

The Gaussian structural element NGauss
k contains special properties, it is point sym-

metric, contains an infinite support and is separable. The Gaussian in 1D reads

Ĝσ(x) =
1√

2πσ2
exp

(
− x2

2σ2

)
. (3.14)

and sums to one
∑

x Gσ(x) = 1. In practice, the support of the Gaussian is re-

stricted. For the purpose of not losing the normalization, the Gaussian needs to be

explicitly normalized hence the initial normalization factor loses its importance,

Gσ(x) =
Ĝσ(x)∑lim

y=− lim Ĝσ(y)
=

Ĝσ(x)

|Ĝσ|
. (3.15)

The Gaussian in 3D reads

Ĝ3D
σ (~c) =

1

(2πσ2)(3/2)
exp

(
−|~c|

2

2σ2

)
, (3.16)

and accordingly the normalized Gaussian in 3D,

G3D
σ (~c) =

Ĝ3D
σ (x)

|Ĝ3D
σ |

. (3.17)
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Figure 3.6: Sample structural elements with radius k = 5, discrete structural ele-
ments a: N∞5 and b: N Euc

5 and continuous structural elements c: N Sphere
5 and d:

NGauss
5 . The red circle depicts ||~c||2 = k.

The Gaussian structural element uses the normalized Gaussian in 3D but differs, to

fulfill Eq. 3.10,

NGauss
k (~c) =

4

3
πk3G3D

ak (~c) (3.18)

where k is the radius and a an additional factor,

a =
3

√
4

3
πk3G3D

k (~0). (3.19)

The 3D Gaussian is separable,

(V ∗G3D
σ )(~x) = (((V ∗G1Dx

σ ) ∗G1Dy
σ ) ∗G1Dz

σ )(~x) (3.20)

with three, except for rotation, identical 1D Gaussian normal distributions. This

reduces the complexity of a convolution in 3D from a cubic (n3) to a linear (3n)

number of steps, with n the size of the 1D mask. The separability redirects also to

the Gaussian structural element,

(V ∗ NGauss
k )(~x) = (V ∗ 4

3
πk3G3D

ak )(~x) =
4

3
πk3(V ∗G3D

ak )(~x). (3.21)

Figure 3.6 shows the 2D projections of the structural elements N∞5 , N Euc
5 , N Sphere

5

and NGauss
5 . Neighborhoods with normalized memberships are connoted with an

asterisk symbol: N Euc∗ , N Sphere∗ or NGauss∗ . These masks are obtained by

N ∗(~c) = N(~c)/|N|. (3.22)
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3.2.2 Local operators

Local texture parameters can be computed for each neighborhood in a similar way

as the global parameters 2.4.1 were computed for a general distribution or the entire

VOI. The computation of the global parameters was defined for the local signal xi

and a weighting function wi. In the case of local operators, the structural element

acts as a selection operator of the signal s(~x) which is combined with the weighting

function w(~x). Hence, the local pendants of Eq. 2.7 and Eq. 2.8 read,

Wp(~x) = (w ∗ (Nk)p)(~x) and (3.23)

Sp(~x) = ((w · sp) ∗ Nk)(~x). (3.24)

Now, the the formulas for the first two weighted cumulantsK1(~x), K2(~x) are identical

to the definition of the global parameters, except for being computed locally for every

voxel ~x. The third weighted cumulant reads,

K3(~x) =

(
S3W

2
1 − 3S1S2W1 − 2S3

1

W 3
1 − 3W1W2 + 2W3

)
(~x). (3.25)

The local nonlinear operators follow the same principle: Let ~ξ1 . . . ~ξN be a labeling

of the 3D positions, which induce an ascending sorting of the values of s: ∀i ∈
{1, . . . , N − 1} : s(~ξi) ≤ s(~ξi+1). The weighted quantile at a given percentile Pr ∈
[0, 1] reads now,

QPr(~x) = s(~ξj) :

j−1∑
i=1

N(~ξi − ~x)w(~ξi) < Pr/W1(~x) ≤
j∑
i=1

N(~ξi − ~x)w(~ξi). (3.26)

From the definitions above, the same parameters as in the global case can be ex-

tracted. However, since the local operators can act like (black-boxed) texture oper-

ators, the set of aggregates can be essentially extended:

• the weighted average,

AVGN(s, w; ~x) = K1(~x) (3.27)

• the weighted standard deviation,

SDN(s, w; ~x) = K
(1/2)
2 (~x) (3.28)
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• the weighted coefficient of variation,

CVN(s, w; ~x) = (K
(1/2)
2 /K1)(~x) (3.29)

• the weighted standardized skewness,

SKWN(s, w; ~x) = (K3/K
(3/2)
2 )(~x) (3.30)

• the weighted median,

MEDN(s, w; ~x) = Q50%(~x) (3.31)

• the robust minimum,

MINN(s, w; ~x) = Q10%(~x) (3.32)

• the robust maximum,

MAXN(s, w; ~x) = Q90%(~x) (3.33)

• the weighted inter-quartile range,

IQRN(s, w; ~x) = (Q75% −Q25%)(~x) (3.34)

• and the weighted quartile coefficient of variation

QCVN(s, w; ~x) =

(
Q75% −Q25%

Q75% +Q25%

)
(~x). (3.35)

The local texture variables will be sometimes abbreviated as AVGN(~x), SDN(~x)

etc., if the choices of s and w are clear from the context. If the structural element

is constant and contains an infinite support, the local operators become identical

to the global operators introduced in Sec. 2.4.1. An application of the local texture

operators will be shown in Sec. 3.6.
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Relation to morphology

The local non-linear operators can be interpreted as a gray-value extension of mor-

phological operators, in particular if w > 0 is constant for all voxels, the signals Q0%

and Q100% become the classical erosion and dilation,

w constant→ Q0%(~x) = (s	N)(~x), and (3.36)

w constant→ Q100%(~x) = (s⊕N)(~x). (3.37)

The actual weighting of the N becomes irrelevant for these extreme cases (Q0% and

Q100%). For the purpose of using the actual weights of N the weighted dilation and

erosion required the application of more central percentiles, like for instance 10%

and 90%,

w constant→ Q10%(~x) = (s	∗ N)(~x), and (3.38)

w constant→ Q90%(~x) = (s⊕∗ N)(~x), (3.39)

where 	∗ is the weighted erosion and ⊕∗ the weighted dilation.

3.3 Preprocessing

Adequate preprocessing methods can contribute to compute structural parameters

in a stable manner. The calibration to from Hounsfield to density values and the

definition of the bone map Bone are standard examples for the pre-processing of CT

volumes. This section contains further examples, 1) for the computation of the bone

ridge and 2) a micro-structural calibration, which might be useful for the analysis

of multi-center CT studies, to analyze CT scans of different quality in a common

pool.

3.3.1 The ridge map

Many micro-structural parameters require either a skeleton or thinned representa-

tion of the bone. The skeleton of a 2D image is well defined and can be obtained

with morphological thinning operators or ridge operators, like the median axis trans-

form. In contrast, the skeleton is difficult to obtain in 3D. The main problem in 3D

is the decision, if a given structure has to be reduced to a rod-like or to a plate-like
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part of the skeleton. For instance, a skeleton representation of the cortex should be

reduced to a plate-like skeleton while inside the spongiosa, both structures should

appear, rods and plates. In other anatomic structures, for instance the liver or the

lung, the skeleton reduces generally to rods only. Different algorithms for obtaining

3D skeletons were proposed [111, 106, 146, 82]. Also the fuzzy distance transform

[113] was adapted to either generate a fuzzy skeleton [71] or to improve directly the

micro-structural parameters, like the Tb.Th or Tb.Sp [127, 26]. The 3D skeletoniza-

tion applies not only in CT imaging but is an important method in brain MRI to

obtain the skeleton of the white matter.

For many operators, it is not required to obtain a complete skeleton of the

structure, but it might be sufficient to thin the initial bone structure. Furthermore,

the classical skeletonization algorithms are sensitive to noise and require a connected

structure in the initial input volume. Scale space approaches can generally be used

to obtain edges and ridges of 2D images with a high amount of robustness against

image noise [74].

The proposed method defines the ridge Ridge of the bone from a fuzzy bone map

Bonet,σ and a normalized 3D structural element. The ridge map Ridge, basically a

thinning of the bone probability map Bone (Eq. 2.19) for voxels that are close to

the ridge, is obtained with

Ridge(~x) = (Bone ∗ NGauss∗

k )q(~x), (3.40)

with NGauss∗

k a normalized Gaussian structural element with radius k and ∗ the 3D

convolution operator, alternatively the normalized weighted Euclidean structural

element N Sphere∗

k could be used. The radius k is an a-priori approximation of the

thickness of the structure in Bone, and 1 < q ≈ 3 is used to steer the sharpness

of the thinning procedure. The fixpoint of Eq. 3.40 is reached if the bone map

Bone is already one voxel wide, hence in the case Bone ≡ Ridge further iterative

applications of Eq. 3.40 do not produce further changes of Bone.

3.3.2 The Monogenic signal

The 2D Monogenic signal [34] is a specific scale space method, which was already

analyzed in the author’s Diploma thesis [128]. The Monogenic signal is an extension

of the 1D analytic signal to higher dimensions. The 1D analytic signal splits a
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(1D) function locally into phase and amplitude, representing the qualitative and

quantitative information. The Monogenic signal computes additionally to the phase

φ and amplitude a also the main gradient of the image flux ∇. The original concept

is based on Laplacian filters, originally defined as a set of difference of Poissons filters

(DoP) which aim as bandpass filters and to derive directional information. While

the Poisson filter is optimal for the purpose of computing the Monogenic signal,

it has the disadvantage of not being separable. Fortunately, the Poisson filter can

be approximated with a Gaussian [34], which owns the missing property of being

separable (see Sec. 3.2.1). For the computation of the 3D Monogenic signal, four

bandpass filters as difference of Gaussians (DoG) are derived, with σf < σc the fine

and coarse scales:

Kxyz(~c) = (G3D
σf
−G3D

σc )(~c), (3.41)

Kx(~c) =

(
~ex · ~c
σf

G3D
σf
− ~ex · ~c

σc
G3D
σc

)
(~c), (3.42)

Ky(~c) =

(
~ey · ~c
σf

G3D
σf
− ~ey · ~c

σc
G3D
σc

)
(~c), (3.43)

Kz(~c) =

(
~ez · ~c
σf

G3D
σf
− ~ez · ~c

σc
G3D
σc

)
(~c) (3.44)

with ~ex, ~ey and ~ez the unit vectors in x-, y- and z- direction and · the point-wise

multiplication. Four convolutions of the 3D input signal V are obtained,

∇u(~x) = (V ∗Ku)(~x) (3.45)

with u a placeholder of xyz, x, y or z. Then, the following signals are extracted.

• The modulus of the gradient,

|∇|(~x) =
√
∇2
x +∇2

y +∇2
z(~x). (3.46)

• The local amplitude:

A(~x) =
√
∇2
xyz +∇2

x +∇2
y +∇2

z(~x). (3.47)
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• The local phase:

φ(~x) = arctan

(
|∇|
∇xyz

)
(~x). (3.48)

• The normalized gradient or local main orientation:

Θ(~x) =

(
〈∇x,∇y,∇z〉

|∇|

)
(~x). (3.49)

The signal ∇xyz is also called the reconstruction of A and φ, since

∇xyz(~x) = A(~x) cos(φ(~x)). (3.50)

Figure 3.7 shows the application of the monogenic signal on a vertebra for different

scales. For the implementation with a finite support, the masks must be normalized

to match the following constraints:

• The sum of the Gaussians must be normalized to one (see Eq. 3.17).

• The support must be defined to fix the energy of the larger Gaussian, for

instance with p = 95%:

p = |G3D
σc | =

∑
~c

G3D
σc (~c). (3.51)

• The energy of the bandpass kernel Kxyz must be aligned to the one of the

gradient kernels:

K∗xyz(~c) =


√√√√∑~d(K

2
∇x

+K2
∇y

+K2
∇z

)(~d)∑
~dK

2
xyz(

~d)

Kxyz(~c). (3.52)

The advantage of replacing the Poisson mask, as defined orginally, with the Gaussian

mask is the separability, which redirects to the Monogenic signal.

The Monogenic signal in scale space

An image or volume contains generally local information of different scales. The op-

timum local scale can be detected by computing the Monogenic signal for a constant
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Figure 3.7: Monogenic signal. Reconstruction and phase for different scales (0.3,
0.5 and 1.0 mm).
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bandwidth w and different scales:

si = exp

(
log(s0) + i

log(sN−1)− log(s0)

N − 1

)
. (3.53)

The parameters of the bandbass filters read

σfi = si/w and (3.54)

σci = siw. (3.55)

Accordingly, one obtains for every scale si all signals φi, Ai, Θi and |∇|i. The classical

approach for selecting the optimum scale is based on the maximum modulus of the

gradient,

s|∇|(~x) = arg max
i
{|∇|i(~x)}. (3.56)

Alternatively, the optimum scale can be selected as the one that produces locally

the smoothest amplitude,

SCV(~x) = arg min
i
{CVN(Ai,1; ~x)}. (3.57)

The local weighted CV is described in Eq. 3.29. Both approaches yield different

results, cos(φs|∇|) reveals a higher amount of details while cos(φsCV
) is superior in

terms of connectivity.

Detection of ridges and edges

The application of the Monogenic signal to CT volumes reveals (1) the qualitative

information if a voxel is part of bone and (2) the quantitative information of the

ridgeness of the bone. The signal φ ∈ [0, π] contains the qualitative information

• the voxel belongs to a bone ridge, if cos(φ) = 1,

• the voxel belongs to a intersection between bone and marrow if sin(φ) = 1.

• the voxel belongs to a bone basin, if cos(φ) = −1 and
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Thus, a probability function of being a ridge Pr, a basin Pb or intersection Pbr can

be established as:

Pr(~x) = max{0, cos(φ(~x))}α, (3.58)

Pb(~x) = max{0,− cos(φ(~x))}α, (3.59)

Prb(~x) = sin(φ(~x))α (3.60)

with α ∈ (0,∞) a parameter of the sharpness. The probabilities Pr, Pb and Prb

are purely qualitative, which means they are unweighted according to the local bone

density and detect therefore false positive voxels outside the vertebra. The weighting

according to the local bone density can be obtained by involving the blurred version

of Bone which is the signal Ridge obtained with a Gaussian structural element and

q = 1, Eq. 3.40. The value k in that equation serves as a blurring range, for instance

k = 0.4mm. The final Monogenic ridge map reads

RidgeMS(~x) = (Pr · Ridge)(~x). (3.61)

Figure 3.8 shows a sample case of RidgeMS. Similar to RidgeMS the maps of the

intersections and the basins can be defined via

BasinMS(~x) = (Pb (1− Ridge))(~x), (3.62)

IntersectionMS(~x) = (Prb (1− |1− 2 Ridge|))(~x). (3.63)

Microstructural parameters

The Monogenic signal can be used to obtain a segmentation of the bone phase,

which suppresses noise. This might improve the computation of standard struc-

tural parameters. Furthermore, the Monogenic signal allows the direct extraction of

structural parameters. When interpreting the signal RidgeMS as a measure of the

local BV/TV, the monogenic bone volume ratio (BV/TV) is defined as

BV/TVMS = AVG(RidgeMS). (3.64)
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Figure 3.9: Histogram of the same specimen but under different settings VDV: a)
histograms (from tight to wide) are 355mAs without body ring, 355mAs with body
ring, 140mAs without body ring and 140mAs with body ring, b) histograms after
correction with the histogram-based global method VGlobal.

Additionally, RidgeMS can be interpreted as a fuzzy segmentation, which yields the

monogenic tissue mineral density (TMD):

TMDMS = AVG(VDV,RidgeMS). (3.65)

Finally, the detected scales s|∇| or sCV can be interpreted as a structural parameter,

which might be related with the Tb.Th, with s∗ either s|∇| or sCV:

Tb.ThMS = AVG(s∗,RidgeMS). (3.66)

3.3.3 Micro-structural calibration

The calibration of density values enables the computation of BMD and micro-

structural parameters. In studies, which contain differences in the noise spectrum,

the standard calibration (Eq. 2.2) is generally not sufficient for an accurate obtain-

ment of micro-structural parameters. Differences of the noise spectrum manifest in

the histogram of the density values, where a high signal-to-noise ratio produces a

high standard deviation of the distribution (Fig. 3.9). A global histogram based and

a local technique to normalize the volumes and to compensate the image noise are

presented. The resulting histograms of the global (VGlobal) and local micro-structural

calibration VLocal are nearly identical.
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Global micro-structural calibration

Let, according to Eq. 2.2, be VDV
i,j (~x) the density at voxel ~x of the i’th calibrated

volume of group j. Furthermore, BMDij is the BMD and SDij = SD(VDV
ij ) the

standard deviation of Vij. The mean standard deviation of group j reads:

SDj = AVG(SD1j, . . . , SDNj). (3.67)

The global normalization VGlobal applies a linear scaling of the histogram, such that

the standard deviation of the resulting histogram becomes constant SD∗ for all scans

but without changing the BMD,

VGlobal
ij (~x) =

SD∗ (VDV
ij (~x)− BMDij)

SDj

+ BMDij. (3.68)

Here, any choice of SD∗ > 0 is valid, however the targeted standard deviation might

be fixed as the global average SD, see Fig. 3.9,

SD∗ = SD =
1

NM

N∑
i=1

M∑
j=1

SDij. (3.69)

This normalization has the advantage that a certain fixed threshold for the group

study reflects now a fixed BV/TV rather than a fixed density value. The disadvan-

tage of this method is the distortion of apparent density values, in particular on the

tails of the histogram.

Local micro-structural calibration

The local calibration removes the bias of the density on the tails of the histogram

and while still decreasing the local noise (or contrast). The calibrated volume is

decomposed into the low-frequency (low-pass) and high-frequency (high-pass) infor-

mation,

Lowpassij(~x) = (VDV
ij ∗ NGauss∗

k )(~x) (3.70)

Highpassij(~x) = (VDV
ij − Lowpassij)(~x) (3.71)
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Figure 3.10: Split of the volume for the local micro-structural calibration with scale
s = 0.5mm and image resolution 〈0.18mm × 0.18mm × 0.3mm〉. (a) input vol-
ume VDV, (b) High pass signal Highpass which is rescaled for the micro-structural
calibration, (c) low-pass signal or local BMD Lowpass.

The low-pass contains the local average density and the high-pass both, the noise

but also the specific structural information. The kernel size k must be big enough to

remove the local structural information but small enough to contain the differences

of the local BMD. The filtering is applied to the high-pass signal, before the volume

is again reconstructed. The standard deviation of the i’th high-passed volume of

group j reads SDLocal
ij = SD(Highpassij), and the mean standard deviation of the

high passed volumes of group j is

SDLocal
j = AVG(SDLocal

1j , . . . , SDLocal
Nj ). (3.72)

With the signal SDLocal
∗ which is the target standard deviation after filtering the

high-passed signal, the local micro-structural calibration reads,

VLocal
ij (~x) =

SDLocal
∗ Highpassij(~x)

SDLocal
j

+ LowpassijV(~x). (3.73)

Any choice of SDLocal
∗ > 0 is valid, in particular the mean of the the entire group

study (as in Eq.3.69),

SDLocal
∗ = SDLocal =

1

NM

N∑
i=1

M∑
j=1

SDLocal
ij . (3.74)

The global method is a special case of the local method. By setting k = ∞ both

become identical, the low-pass becomes unable to capture any local information and
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thus reduces to the BMD,

Lowpass = (VDV ∗ NGauss∗

∞ )(~x) = BMD, (3.75)

accordingly SDLocal becomes SD.

It is worth to note that neither of both calibration techniques improve the im-

age quality but both serve only for an enhancement regarding the comparison of

structural parameters in inhomogeneous group studies. While the global method

rescales the gray values of the entire image, the local approach rescales only the

high frequency information, where the noise is located.

Statistical Analysis

For the statistical analysis, the data of the vertebra phantoms was analyzed. Di-

rect measures from voxel counting were bone mineral density (BMD), bone volume

fraction (BV/TV) and tissue mineral density (TMD). The mean intercept length

(MIL) was computed with the direct secant method, yielding trabecular number

(Tb.N), bone surface fraction (BS/BV), trabecular thickness (Tb.Th∗) and trabecu-

lar separation (Tb.Sp∗) from the parallel plate model. Model independent measures

were trabecular separation (Tb.Sp), trabecular thickness (Tb.Th) and the structure

model index (SMI). All parameters were computed for each of the three calibration

techniques: 1) the standard calibration of the density values VDV, 2) the global

micro-structural calibration VGlobal and 3) the local micro-structural calibration

VLocal. The threshold was chosen at t = 400 mg/cm3 which served to obtain an

average BV/TV≈ 25%.

Results

Figure 3.11 shows the structural parameter for a sample case (Tb.Th∗). A sys-

tematic bias was observed when not performing the micro-structural calibration.

The absolute values of Tb.Th∗ increased with increasing noise level. The global

micro-structural calibration was able to increase the precision, but still the values of

Tb.Th∗ were ordered by the noise level, however inverted. The local micro-structural

calibration increased additionally the precision and removed simultaneously most of

the remaining noise-bias.
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Figure 3.11: Computed values of Tb.Th∗ for all 10 repeated scans and all 20 VOIs.
Left: application of density calibration only (VDV), middle: global micro-structural
calibration (VGlobal), right: local micro-structural calibration (VLocal).
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Figure 3.12: Results of the short-term (left) and long-term precision (right) on
a logarithmic scale. Blue bar: application of density calibration only (VDV), red
bar: global micro-structural calibration (VGlobal), green bar: local micro-structural
calibration (VLocal).

Accuracy and precision

Figure 3.12 shows the short-term and long-term precision of all computed struc-

tural parameters. The reproducibility (STP) in a group study was improved for

all micro-structural parameters (except for BMD) using either the global VGlobal

or the local micro-structural calibration VLocal. The largest gain of reproducibility

was achieved with VLocal, which was in some cases (BMD, TMD, BV/TV) mostly

equal to VGlobal. The STP of the parameters of VLocal in relation to the data with-

out micro-structural calibration VDV ranged from 57% for Tb.Th down to 13% for

BV/TV, 11% for Tb.Sp∗ and 9% for TMD. VLocal improved 8 from 10 parameters
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significantly p < 0.01. Only BMD (p = 0.97) and Tb.Th (p = 0.13) did not improve

with statistical significance. In the case of VGlobal four parameters improved with

high statistical significance (p < 0.01): TMD, BV/TV, Tb.N and Tb.Sp∗ and three

with simple significance: BS/BV (p = 0.02), MIL (p = 0.03) and Tb.Th∗ (p = 0.03).

Tb.Sp (p = 0.07) did not improve significantly and the R2 of BMD and Tb.Th even

declined under VGlobal. Significant improvements of the long-term precision with

micro-structural calibration were not observed. Here the ratio between VLocal and

VDV ranged from 93% for Tb.Th∗ up to 109% for Tb.N.

Discussion and conclusion

The experimental work performed in this section focused on the analysis of two im-

portant aspects: the precision or reproducibility of the computed micro-structural

parameters, expressed as STP and the accuracy or trueness of the parameters,

expressed as LTP. The results showed that the standard density calibration was

poorly adjusted to heterogeneous group studies, if the threshold remained fixed. If

the threshold was adapted to a fixed BV/TV, as assessed with the global micro-

structural calibration VGlobal, all structural parameters improved, with exception of

Tb.Th. The linear map of VGlobal decreases the performance of BMD since this op-

eration distorts the density values. However, the precision of TMD was not affected

by this distortion, because the TMD is computed on the statistically corrected right

part of the histogram. In contrast, a simple adaption of the threshold for each group

to fit a constant BV/TV, but applied on VDV would result in wrong values of the

TMD.

The local micro-structural calibration VLocal reduces the noise directly without

biasing the density values. Hence, the BMD but as well the TMD were correctly

computed. However, the performance regarding the TMD and BV/TV was not dif-

ferent to the one with VGlobal. The reproducibility of the micro-structural parameters

improved remarkably, not only towards VDV but as well towards VGlobal.

Regarding the second statistic (LTP), no obvious differences were observed be-

tween either of the three calibration techniques. This means that the structural

information which is computed from the QCT scans is not decreased by the pro-

posed methods. For studies that are performed on one homogenous setting, the

application of the micro-structural calibration has no negative effect. This is an im-

portant finding, since an homogenous setting of a complete in-vivo study is nearly
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impossible to obtain. Not only changes of exposure, voltage or the model of the

scanner or calibration phantom bias the calibrated volume VDV, but also the pa-

tient’s location inside the x-ray tube or the patient’s size, which might easily change

between different patient’s visits.

The local micro-structural calibration, as proposed here, were to the author’s

knowledge so far not proposed for the application of QCT group-studies. A global

micro-structural calibration[56], which is, with exception of BMD and TMD, for all

structural parameters identical to an adaption of the threshold, was already pro-

posed. Also the problem of threshold selection [48] is a known problem for many

structural parameters. In some cases, a correction of the scanner settings is per-

formed post-hoc [42]. Here, a linear fit in the parameter space is applied, trans-

forming for instance the parameter Tb.Sp into an adjusted Tb.Sp. This adjustment

is problematic, because it assumes a linearity of the structural parameter with the

noise level. Also the absolute scale gets lost, hence an adjusted structural parameter

does not serve anymore for quantitative conclusions.

Three calibration methods for the computation of micro-structural parameters

on inhomogeneous CT group studies were compared. A simulated inhomogeneous

group study consisting of 5 patients, containing each 4 VOIs with in total 10 repeated

scans per patient and 2 HRQCT and 2 QCT settings was simulated. Ground-truth

data were obtained from reference HRpQCT scans. In particular the novel micro-

structural calibration method VLocal was able to improve the reproducibility of all

considered micro-structural parameters without harming the accuracy. The absence

of any bias regarding the ground-truth suggests that any post-hoc adjustment of

micro-structural parameters might become obsolete if performing the proposed a-

priori correction of the input volumes.

3.4 Soft classification of the plate-rod model with

three dimensional rose diagrams

This section presents a local soft classifier of the rod-plate-model and the anisotropy

of spongy 3D volumes and is an extension of a method presented at Escuela y Work-

shop Argentino en Ciencias de las Imágenes, Buenos Aires, 2014 [129]. The operator

is intended to operate correctly at junctions and mixed regions between rods and

plates. In contrast to other operators, neither skeletonization nor binarization are
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required. Moreover the operator presented here works directly on the rose diagram

without applying a principal component analysis. The comparison of this approach

with standard methods suggests the ability of superior performance on noisy images

with low resolution. Although further improvements are still required for real-world

CT data, the method might likely be suitable to analyze clinical in-vivo computed

tomography scans.

3.4.1 Introduction

The estimation of the plate-rod model is important for many image processing tasks

of the analysis of volumetric and spongy volumes, for instance on computed to-

mographic volumes of the vertebra. The ratio between plates and rods serves as

a input of the model dependent trabecular separation and distance of the discrete

secant method [122]. Also the finite element analysis for the estimation of the

bone-strength could be boosted by including the individual rod-plate model and

the directional information. Finally the distribution of orientations of the rods and

plates and the rod-plate-ratio can be used as a primary structure parameter for

monitoring changes or disorders of the skeletal architecture.

The local acquisition of the rod-plate model at bone images is generally affected

by low resolution and the low signal-to-noise ratio, which reduces the accuracy of

the parameter estimation. General approaches are based on the local principal

components and perform week at junctions and at non-ridge locations. Figure 3.13

demonstrates that issue. A description with principal components relates only the

3 principal axes to each other λ1 ≥ λ2 ≥ λ3, hence rods are given by λ1 � λ2 ≈ λ3,

plates are λ1 ≈ λ2 � λ3 and isotropic neighborhoods are given by λ1 ≈ λ2 ≈ λ3.

This methodology contains fails in the case of junctions, detecting a rod-rod junction

as a plate, and a rod-plate or plate-plate junction as an isotropic region.

The estimation of the rod-plate model with the SMI and the 3D fragmentation

index [123] is only defined for binary structures and does not contain any noise

treatment. Further approaches were developed that belong either to the class of

eigenvalue- or non-texture-methods (see [91] and references therein) and local esti-

mators of fabric anisotropy and fabric elongation are based on eigenvalues (compare

[10] and [63]).

The here proposed method derives the anisotropy and the rod-plate model with-

out applying a principal component analysis, binarization or skeletonization. In-
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Figure 3.13: Sample rose diagrams based on the inverse standard deviation, weighted
by the bone mass a) void, b) rod c) jnction of rods d) plate e) junction of rod and
plate f) junction of plates.
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stead, it analyzes directly the 3D rose diagram of local 1D texture parameters.

The features are robust against noise by convolving the local 1D texture inside a

neighborhood, following a principle developed by Andrea Silvetti [121].

3.4.2 Directional standard deviation

The proposed method transforms the 3D volume V into N new volumes of identical

size VSDθ1 , . . . ,VSDθN . Each of these new volumes contains the local standard

deviation in direction θ. The uniform distribution of orientations Θ = θ1, . . . , θN in

3D, the 3D rose diagram, is supplied by an algorithm which recursively sub-divides

an octahedron [63], defining for each 3D orientation θi a line grid. Every voxel ~x is

the center of a line segment with orientation θi and length L. Now, the standard

deviation is computed for all line segments, thereby the line segments of all centers

and orientations are resampled with the 3D spline method to reach the same length

in voxels. Each line segment contains the values

〈V(~x− L θ), . . . ,V(~x+ L θ)〉. (3.76)

The volume that contains the directed standard deviations reads

V̂SDθ(~x) = SD(〈V(~x− L θ), . . . ,V(~x+ L θ)〉, 〈w−L, . . . ,WL〉), (3.77)

where the unweighted standard deviation reads ∀i : wi = 1 and the weighted one uses

the 1D Gaussian: ∀i : wi = GL(i). It is important to compute the standard deviation

directly on the volume data, without applying any smoothing or noise reduction,

which would reduce the computed standard deviation. However, a smoothing might

be applied after computing the standard deviation, thus following the idea of the

3D local operators with view-range r:

VSDθ(~x) = AVGNGauss
r

(V̂SDθ, W̃ ; ~x), (3.78)

where W̃ is a weighting map of same size as V, for instance defined as W̃ (~x) =

Ridge(~x). The average operator might alternatively be replaced with the median

operator,

VSDθ(~x) = MEDNGauss
r

(V̂SDθ, W̃ ; ~x), (3.79)
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obtaining generally a smoothing of higher robustness. For simplicity, both weight-

ing functions W (Eq. 3.77) and W̃ (Eq. 3.78) are disabled in the conducted tests,

hence contain everywhere ones. The abbreviation VSD(~x) refers to the complete

4D data set of standard deviations at ~x in all N directions θ1, . . . , θN . Increasing

the parameters L and r increases the robustness against noise but decrease the spa-

tial resolution, hence they need to be adapted for every specific image class and

according to the specific problem.

The signal VSDθ(~x) is inverted against common rose diagrams based on mass

distributions (Fig 3.13), the principal orientation of the intrinsic structure is given

by the minimum standard deviation. The values of VSD(~x) at a void but noisy

region is distributed around the noise level η. A region with a rod in orientation

θ contains η at θ and higher values at the other orientations. The same counts

for a region containing a plate with normal θ. At compound structures, e.g. two

perpendicular rods in orientation θX and θY , the minimum of VSD(~x) is strictly

above the noise level: VSDθX (~x) ≈ VSDθY (~x) > η, this is the case at the junction

of the two rods in the test image.

Anisotropy and junction index

An anisotropy index A∗ ∈ R≥0 is derived as the median standard deviation,

A∗(~x) = MED({VSDθ1(~x), . . . ,VSDθN (~x)). (3.80)

This signal is mapped to the interval [0, 1) with the cumulative gamma distribution

ΓCDF . Let gk,m(x) be the generic function

g(k,m)(x) = 2 max{0,ΓCDF(x; k,
m

k

3k + 0.2

3k − 0.8
)− 0.5}, (3.81)

with k a shape parameter and m the optimum approximation of the median of ΓCDF

(see [5]), and ∀x < m : g(k,m)(x) = 0. The anisotropy index A ∈ [0, 1) reads now

A(~v) = g(0.5,η)(A
∗(~v)) (3.82)

with η the noise level as introduced before.

The rose diagram VSD(~x) contains its minimum at orientations, which con-

tribute either to rods or plates. A distinction between rods and plates is derived by
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Figure 3.14: a) X-Z-projection of VSD(~x) and VSD′(~x) of a rod in x-orientation and
b) of a plate with normal in y-orientation, c) box plot showing the distribution of
VSD′(~x) at the rod- and plate- voxel. The ratio between minimum and maximum
of the plotted data defines pRod(~x).

transforming VSD(~x) to the dual rose diagram VSD⊥, that contains the median of

the orthogonal directions of VSD:

VSD⊥ϑ (~x) = MED({VSDθ1(~x), . . . ,VSDθM (~x)}|θi⊥ϑ) (3.83)

This dual rose diagram is again remapped to the initial directions by using now the

minimum operator,

VSD′θ(~x) = min({VSD⊥ϑ1(~x), . . . ,VSD⊥ϑL(~x)}|ϑi⊥θ) (3.84)

The set {VSD⊥ϑ1 , . . . ,VSD⊥ϑL} is related to the plate-Hough transform of VSDθ, and

VSD′θ is the feature extraction from that Hough-space. A local voxel ~x contains a

plate, if the following requirement is fulfilled,

~x contains plate⇔ ∃φ : VSDφ(~x) = min{VSDθ1(~x), . . . ,VSDθN (~x)}

∧ VSD′φ(~x) = min{VSD′θ1(~x), . . . ,VSD′θN (~x)}. (3.85)

Similarly reads the condition that ~x contains a rod in direction φ,

~x contains rod in φ⇔ VSDφ(~x) = min{VSDθ1(~x), . . . ,VSDθN (~x)}

∧ VSD′φ(~x) > min{VSD′θ1(~x), . . . ,VSD′θN (~x)}. (3.86)
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Figure 3.14 illustrates this relation.

Plate and Rod-likeness

The plate-likeness Plate(~x) ∈ [0, 1) and rod-likeness Rod(~x) ∈ [0, 1) are defined as:

pRod(~x) =
min{VSD′θ1(~x), . . . ,VSD′θN (~x)}
max{VSD′θ1(~x), . . . ,VSD′θN (~x)}

(3.87)

Rod(~x) = g(4,2η)(pRod(~x)A∗(~x)) (3.88)

Plate(~x) = g(1,2η)((1− pRod(~x))A∗(~x)), (3.89)

with pRod(~x) the probability that an existing anisotropy is not induced by a plate,

g(k,M)(x) serves to normalize the signal to [0, 1) and η is the noise level as used

before, Fig. 3.15.

The global rod volume fraction can be defined with the weighted average and

the ridge map Ridge(~x) as defined in Sec. 3.3.1 and Sec. 3.3.2,

RV/BVRose =

∑
~x Rod(~x)Ridge(~x)∑

~x Ridge(~x)
. (3.90)

Similarly the plate volume fraction reads,

PV/BVRose =

∑
~x Plate(~x)Ridge(~x)∑

~x Ridge(~x)
. (3.91)

Additionally the anisotropic rod volume fraction reads

RV/(RV+PV)Rose =

∑
~x Rod(~x)Ridge(~x)∑

~x(Rod(~x) + Plate(~x))Ridge(~x)
, (3.92)

and the anisotropic plate volume fraction is

PV/(RV+PV)Rose =

∑
~x Plate(~x)Ridge(~x)∑

~x(Rod(~x) + Plate(~x))Ridge(~x)
. (3.93)

3.4.3 Preliminary results and discussion

Figure 3.15 shows the application of the plate- and rod classifier C(λ1, λ2, λ3) taken

from [138], which is based on the three principal components. Methods based on

principal components fail in general at junctions since they are unable to distinguish
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Figure 3.15: a) Noisy test volume: the slice cuts two rods (left and bottom) and
one plate (top) in its center, b) anisotropy index A(~x) c) rod- and plate-likeness:
red channel Rod(~x), green channel Plate(~x). d) C from [138] based on the three
eigenvalues of a principal component analysis. This parameter performs inaccurate
at junctions.

between perpendicular junctions of rods and plates and neither between intrinsic 3D

(or 0D) regions and junctions of a plate with a perpendicular rod. Another problem

is the impact of noise and the detection of rods and plates at locations that are not

located on the ridge of the structure. On the contrary, the here presented method

is robust at these spots. The operator is adaptable to different texture parameters,

thus not only to the standard deviation but for instance as well to the inter-quartile

range. Furthermore a combination with a signal that uses the average or median of

the directed line segments could be beneficial, hence replacing the standard deviation

in Eq. 3.77 with the average or median operator. This can be used to extend the

definitions given in Eqs. 3.86 and 3.85. It is worth to note, that the minimum- and

maximum- operator might be replaced in practice with a weighted minimum and

maximum-operator, meaning a weighted 5% or 95% quantile and the orthogonality-

operator θ⊥ϑ must be replaced with a weighting according to the angle between θ

and ϑ, similar to the procedure applied in Eq. 2.5. Finally the standard deviation

can be computed with directional weighting masks and the formula of the weighted

operators, Sec. 3.2.2, thus avoiding resampling issues. The proposed method can

be adjusted to particular volume types by varying size of the integration length L,

used for the definition of V̂SDθ(~x), the smoothing range r used for the definition of

VSDθ(~x), or the shape parameter k, used for defining g(k,M)(x).
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3.5 The rod volume fraction and the trabecular

thickness with the local fractal dimension

Parts of this section have been published in Medical Physics [132] and a prelimi-

nary fractal method has been published in 2013 at the Argentine Symposium on

Technology [130]. The method aims to demonstrate the application of the fractal

dimension and it deals together with the method of Sec. 3.4 with the detection of

the local anisotropy and the distinguishing between plate- and rod-like structures.

Existing microstructure parameters are able to predict vertebral in-vitro failure

load, but for noisy in-vivo data more complex algorithms are needed for a robust

assessment. A new algorithm is proposed for the microstructural analysis of tra-

becular bone under in-vivo quantitative computed tomography (QCT). Five fractal

parameters are computed: (1) the average local fractal dimension FD, (2) its stan-

dard deviation FD.SD, (3) the fractal rod volume ratio fRV/BV, (4) the average

fractal trabecular thickness fTb.Th, and (5) its coefficient of variation fTb.Th.CV.

The algorithm requires neither an explicit skeletonization of the trabecular bone,

nor a well-defined transition between bone and marrow phases. Two experiments

were conducted to compare the fractal with established microstructural parameters.

In the first, 20 volumes-of-interest of embedded vertebrae phantoms were scanned

five times under QCT and high-resolution (HR-)QCT and once under peripheral

HRQCT (HRpQCT), to derive accuracy and precision. In the second experiment,

correlations between in vitro HRQCT structural parameters were obtained from 76

human T11, T12, or L1 vertebrae. In vitro fracture data were available for a subset

of 17 human T12 vertebrae so that linear regression models between failure load and

microstructural HRQCT parameters could be analyzed. The results showed corre-

lations of fTb.Th and fRV/BV with their nonfractal pendants trabecular thickness

(Tb.Th) and respective structure model index (SMI) while higher precision and

accuracy was observed on the fractal measures. Linear models of bone mineral

density with two and three fractal microstructural HRQCT parameters explained

86% and 90% (adjusted R2) of the failure load and significantly improved the linear

models based only on BMD and established standard microstructural parameters

(68% − 77% adjusted R2). The application of fractal methods may grant further

insight into the study of bone quality in-vivo when image resolution and quality are

less than optimal for current standard methods.
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3.5.1 Introduction

Quantitative computed tomography (QCT) is a clinical in-vivo 3D image modality

that allows visualization and quantitative assessment of the spongy microstructure

of human vertebrae. In particular, QCT can be used for diagnosis and monitoring

of osteoporosis. Bone quality encompasses bone mineral density (BMD), micro

architecture, turnover rates, damage accumulation, and mineralization [28]. While

the extraction of BMD from QCT or even dual energy absorptiometry (DXA) is

straightforward, the estimation of microstructure parameters is more challenging.

BMD is able to account for up to 70% of variability of the vertebral failure load, while

existing microstructure parameters yield little additional information. Nevertheless,

high computational power enables the application of more complex algorithms which

are needed for a robust assessment of microstructure parameters under noisy in-vivo

QCT.

Several refined algorithms have been proposed for dependent [49] and indepen-

dent trabecular separation models [127, 26, 71]. Algorithms of the rod volume ratio

(RV/BV) include scale space methods [114], fuzzy approaches [89], concurrent as-

signments of rod- and plate-likeness on the same voxel [91], and methods to obtain

simultaneously RV/BV and trabecular thickness (Tb.Th) [138]. However, most of

these attempts require a well-defined transition between bone and marrow phases

or a structure preserving 3D skeletonization [112]. This makes them more likely

suited for HRpQCT, rather than HRQCT or QCT resolution realms. In 3D imag-

ing, fractal methods contain similar properties as scale space methods. Due to the

limited computational power, early implementations of fractal concepts focused pri-

marily on global parameters, for instance, box-counting dimensions [36]. Nowadays,

different kinds of local fractal dimensions exist [121] and have been obtained from

an initial slope in loglog scale between a local measure and the radii of the local

neighborhood. In particular the trabecular bone score [105] a fractal dimension on

the local variance of the trabecular bone, extracts structural information from 2D

projections [120]. However, the trabecular bone score may not be suited to estimate

bone strength [85].

The aim of this fractal method is to introduce new structural parameters from

QCT that (1) are robust against noise, (2) contain a semantic link to existing mi-

crostructural parameters, and (3) contribute to assess key properties of bone health,
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Figure 3.16: Evolution of α, the slope of logMr vs log r, on a rod. α is constant 3
at r < RMin, descends smoothly towards 1 at r ∈ [RMin, RMax] and ascends again
towards 3 at r > RMax. (a) Spatial illustration of Mr (b) α as a function of the
radius r.

such as estimations of bone strength. New fractal methods of RV/BV and Tb.Th

are proposed, based on local fractal methods of the Hölder exponent [93, 76].

3.5.2 Materials and Methods

The following subsections describe the fractal method, the image data and the ap-

plied statistical methods.

The Hölder exponent in digital images

The 3D Hölder exponent αr relates the radius r of a sphere with the number of

points (or mass) Mr inside that sphere, by computing the slope between log r and

logMr,

αr = lim
a→1

(
logMra − logMr/a

2 log a

)
. (3.94)

If the data consists of infinite thin points, αr is independent of r: the Hölder ex-

ponent α is 1 on a line, 2 on a plane, and 3 on a sphere. This method has been

extended for digital images, where voxels are not infinitely thin and to measure rods

and plates instead of lines and planes. Rods and plates contain a positive trabec-

ular thickness (2RMin), causing the slope αr to vary with r. Three different cases

are met when measuring αr on the center of a rod (Fig. 3.16). The slope starts at

(αr = 3) for r < RMin, descends smoothly towards one at r ∈ [RMin, RMax] before

ascending towards three at r > RMax. The radius RMin is the half of the local trabec-
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ular thickness and RMax defines the maximum local radius, which does not intersect

with different bone structures. The information of the local rod- or plate-likeness is

hidden in the interval r ∈ [RMin, RMax].

Two different methods were defined to extract the fractal dimension, the first

method uses only information from the slope αr, while the second method uses

additionally information of the curvature κr. First, when assuming that the local

structure is sufficiently isolated from neighboring structures (RMax > 3RMin), the

local fractal dimension FD1(~x) at an arbitrary voxel ~x can be estimated by the

minimum of αr at ~x,

FD1(~x) = min
r
{αr(~x)} (3.95)

The estimate FD1(~x) yields an overestimation of the real local fractal dimension, in

particular in combination with image noise. The overestimation can be assessed by

the curvature κr,

κr = lim
a→1

arctan

(
logMra − 2 logMr + logMr/a

(log a)2

)
. (3.96)

An adjusted local slope is now estimated from a function A(α, κ) ∈ [0, 3] which

expresses the local fractal dimension in terms of slope and curvature. The local

fractal dimension FD2(~x) is then computed as the minimum of A(αr(~x), κr(~x)),

FD2(~x) = min
r
{A(αr(~x), κr(~x))}. (3.97)

Since values of αr(~x) are generally larger than the true fractal dimension, which

can be estimated with FD2(~x), the ratio of FD2(~x)/αr(~x) grows towards one with

increasing radii r. This allows to estimate the limiting radius RMin from a function

Ω(α, FD2/α) ∈ [0, 1], which expresses the ratio of RMin and r. The local trabecular

thickness fTb.Th(~x) is now estimated the minimum of 2rΩ(αr(~x)), FD2/αr(~x),

fTb.Th(~x) = min
r
{2rΩ(αr(~x), FD2/αr(~x))}. (3.98)

Global parameters

To compute the fractal measures on digital volumes of spongy bone, the mass Mr(~x)

at voxel ~x was derived with a convolution of a bone map Bone(~x) and the structural
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element N Sphere
r ∈ [0, 1], as defined in Eq. 3.13,

Mr(~x) = (Bone ∗ N Sphere
r )(~x) (3.99)

For every voxel, the masses of N = 25 different radii were computed, the factor of

difference of the radii is given by a = (RMax/RMin)(1/N−1), as used in Eqs. (3.94) and

(3.96), and the radii read ri = RMin a
(i−1) with i ∈ {1, . . . , N}. The maximum and

minimum radius where set to RMax = 1.0mm and RMin = 0.3mm. The bone map

Bone(~x) was computed as defined in 2.18, combined with the global micro-structural

calibration, Eq. 3.68, which allowed to fix the BV/TV to a constant value.

For the computation of the final VOI-based aggregates, the signals FDi(~x) and

fTb.Th(~x) are locally smoothed (Eq. 3.27) with the Gaussian structural element

NGauss
k (Eq. 3.18) and the ridge map Ridge (Eq. 3.40),

S(~x) = AVGNGauss
k

(S,Ridge; ~x) (3.100)

with S ∈ {FD1, FD2, fT b.Th}. The ridge map is defined with q = 3, and both,

the ridge map and the smoothing use k = 1mm the a-priori appproximation of

the trabecular thickness. Now, the global estimates use the formulas for the global

average and standard deviation, as defined in 2.12 and 2.13. The final structural

parameters for method i ∈ 1, 2 are

• the average fractal dimension,

FDi = AVG(FDi,Ridge) (3.101)

• the standard deviation of the local fractal dimension,

FDi.SD = SD(FDi,Ridge), (3.102)

• the fractal trabecular thickness,

fTb.Th = AVG(fTb.Th,Ridge), (3.103)
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• and the coefficient of variation of the local fractal trabecular thickness,

fTb.Th.CV =
SD(fTb.Th,Ridge)

AVG(fTb.Th,Ridge)
. (3.104)

• Under the assumption that the volume contains only rods and plates, adn with

FDNoise
1 = 2.0 and FDNoise

2 = 1.45 at a threshold value generating BV/TV =

25% the fractal rod volume ratio fRVi/BV is defined as

fRVi/BV =

∑
~x max{0,FDNoise

i − FDi(~x)} · Ridge(~x)∑
~x |FDNoise

i − FDi(~x)| · Ridge(~x)
. (3.105)

The range of FDi(~x) is decreased in noisy scenarios, inducing an overestimation of

rods and an underestimation on plates or entirely filled regions and FDi(~x) collapses

to a constant value FDNoise
i at a signal-to-noise ratio of 1. The fractal plate volume

ratio is given by fPV/BVi = 1 − fRV/BVi. Figure 3.17 shows the application of a

phantom of three rods and plates under noiseless and noisy conditions. The signal

FD1(~x) contains low variation inside rods or plates, and FD2(~x) minimizes the error

with the ground-truth.

Defining the look-up tables

The functions A(α, κ) and Ω(α, FD/α) were derived from the evolution of the inter-

section of a sphere of radius r with a sphere, rod, plate of radius RMin, representing

the integer fractal dimensions 0, 1, and 2. The fractal dimension 3 was directly

obtained from the volume of a sphere with radius r. The masses of these structures

are

MFD
r =


4/3πR3

Min, if FD = 0 ∧ r > RMin

πR2
Min(3r̂ + r) + π

3
(r − r̂)3, if FD = 1 ∧ r > RMin

πRMin(2r2 − 2/3R2
Min), if FD = 2 ∧ r > RMin

4/3πr3, if FD = 3 ∨ r ≤ RMin

, (3.106)

with r̂ =
√
r2 −R2

Min. The logarithms of these volumes were then interpolated for

non integer fractal dimensions and the slope α and the curvature κ, expressed in

radians, were computed for r ∈ [0, 10 RMin]. To obtain the map A(α, κ), the known

fractal dimension FD was fitted as a surface of α and κ. Figure 3.18 shows the
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Figure 3.17: Application of the fractal method on a synthetic phantom consisting of
two vertical rods and plates and one horizontal rod and plate of different thickness.
Rows: (1) noiseless phantom, (2) signal-to-noise ratio = 10, (3) signal-to-noise ratio
= 5. Columns: (1) volumetric rendering, (2) middle slice through the phantom, (3)
FD1(~x), (4) FD2(~x), (5) fTb.Th(~x).

Figure 3.18: (a) Evolution of the prototype masses with r for FD = 0, 0.5, 1, . . . 3,
(b) Hölder exponents α and A(α, κ) of the prototype and interpolated volumes.
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evolution of the volumes and the estimates of α and A(α, κ), α requires much larger

radii (r > 3 RMin) to obtain a close estimate to the true fractal dimension than

A(α, κ) (r > 1.2 RMin). In a similar way to the estimation of the fractal dimension,

the map for the trabecular thickness Ω(α, FD/α) was obtained from the known

values of r/RMin as a surface interpolation of α and FD/α. The algorithm was

developed in Matlab (v8.1, The MathWorks, Inc., Natick, MA, USA).

Experiments

Two data sets were analyzed: the experiment of the vertebra phantoms, Sec. 3.1.1,

served to obtain robustness of the method with respect to precision and accuracy,

the data of the Bioasset study, Sec. 3.1.3, served to predict the failure load Fexp and

to obtain correlations between all parameters. The HRpQCT-data (Ground truth

(1)) was used as ground-truth of the first experiment.

The following standard parameters were computed: bone mineral density (BMD),

bone volume fraction (BV/TV), and tissue mineral density (TMD); with a model

dependent method trabecular number (Tb.N), mean intercept length (MIL), and

bone surface ratio (BS/BV); and model independently [54] trabecular separation

(Tb.Sp), trabecular thickness (Tb.Th), and structure model index (SMI).

The threshold for computing the microstructural and fractal parameters was

group-wise adjusted to compensate systematic differences between the QCT, HR-

QCT and HRpQCT scans, using the global microstructural calibration, Sec. 3.3.3,

according to [48, 56]. The threshold was selected in order to obtain BV/TV ≈
10% on HRpQCT[75] and BV/TV ≈ 25% on QCT and HRQCT. Calibration of

the HRpQCT scans was performed with the scanners software (Scanco Medical

AG, Brüttisellen, Switzerland), and registration, calibration, and computation of

the standard parameters were performed with Structural Insight (v3.1, Biomedical

Imaging, University of Kiel, Germany).

Precision and accuracy were derived from the vertebra phantoms, using the met-

rics STP and LTP, Sec. 3.1.2. The sample size and the number of repeated scans

were sufficient to claim statistical significance at a level considered appropriate for

characterizing STP and LTP [40]. Average, standard deviation, quartiles, and Spear-

man’s rank correlation coefficients (ρ) were computed from the BioAsset data (76

vertebrae), p-values were Bonferroni corrected for multiple comparisons.
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Figure 3.19: Precision (STP) vs accuracy (LTP) with confidence intervals. Lowest
values represent highest trueness and reproducibility, isobars depict compound errors
of both metrics, (a) ten scans (HRQCT and QCT with and without body ring,
confidence intervals of p < 0.025), (b) three scans (HRQCT without additional
body ring, confidence intervals of p < 0.1).

For 17 vertebrae, linear models for the prediction of Fexp were derived from

BMD in combination with up to three microstructural parameters. R2, RMSE, and

adjusted R2 (adjR2) were computed and a robust R2 (robR2) and RMSE (robRMSE)

were obtained from leave-one-out cross-validation of all combinations. The optimum

regression models between Fexp and fractal or standard structural parameters were

selected as those with the minimum corrected Akaike information criterion (AICc),

see Sec. 3.1.4. The analysis was performed with JMP (v11, SAS Institute, Inc.,

Cary, NC, USA) and Matlab.

3.5.3 Results

Precision and accuracy

Figure 3.19 a) shows the precision (STP) and accuracy (LTP) of all structural

parameters on ten repeated scans. Highest precision and accuracy (STP, LTP)

were obtained by BMD (6%, 13%) and BV/TV (11%, 11%). From the microstruc-

tural parameters, FD (16% − 19%, 13%) was most robust, followed by fRV/BV

(16%− 20%, 19%), SMI (14%, 20%), and TMD (20%, 20%). The parameter fTb.Th

contained low precision but high accuracy (36%, 12%). However, its pendant Tb.Th

(58%, 32%) still contained higher errors regarding both metrics. If considering only

three repeated scans with a minimum noise level, Fig. 3.19 b), STP generally de-

creased while LTP remained unchanged. In particular, FD (5%− 6%, 12%− 13%),

fRV/BV (5% − 6%, 19%), and fTb.Th (8%, 11%) obtained similar robustness as
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BMD (5%, 12%) and BV/TV (6%, 10%). Improved precision was also observed on

FD2.SD, Tb.N, Tb.Th, and Tb.Sp.

Descriptive statistics and correlations between parameters

Parameter Avg SD Q1 Q3

FD1 2.12 0.04 2.08 2.15
FD2 1.57 0.05 1.54 1.60
FD1.SD 0.32 0.02 0.30 0.34
FD2.SD 0.32 0.03 0.30 0.34
fRV1/BV(%) 29.3 6.6 24.0 35.0
fRV2/BV(%) 28.6 6.1 23.7 32.7
fTb.Th(mm) 1.10 0.02 1.09 1.12
fTb.Th.CV(%) 13.8 0.5 12.3 13.3
BMD(mg/cm3) 54.0 19.5 43.8 69.2
TMD(mg/cm3) 206.1 7.8 201.7 211.8
BV/TV(%) 25.0 1.5 24.0 26.1
Tb.N(mm−1) 0.67 0.07 0.62 0.72
Tb.Th(mm) 0.39 0.05 0.35 0.43
Tb.Sp(mm) 0.95 0.13 0.85 1.04
SMI 0.16 0.10 0.08 0.22
Fexp(kN) 2.10 0.50 1.75 2.47
Age(yr) 80.9 7.1 75.5 86.0
BMI(kg/m2) 22.4 4.7 18.7 26.5

Table 3.2: Fractal, densitometric and microstructural parameters (N = 76), biome-
chanical data Fexp (N = 17) and donors’ characteristics (N = 33).

The parameter FD1 showed higher values than FD2, while values of fRV1/BV

and FD1.SD were similar to fRV2/BV and FD2.SD, respectively (Tab. 3.2). The

parameter fTb.Th contained higher estimates than Tb.Th (and Tb.Sp) but reduced

variation (SD/Avg). Spearman’s rank correlation coefficients (ρ) between all pa-

rameters are shown in Tab. 3.3 with the exception of BS/BV, since it contained

the same values as MIL. In general, the standard parameters correlated with each

other, as did the fractal parameters, while the correlation between parameters of

both groups was rather low. An exception was fTb.Th which contained significant

correlations to all parameters with exception of BMD and FD.SD. The correlation

between fTb.Th and Tb.Th (ρ = 0.75∗) was not noticeably stronger than between

fTb.Th and other structural parameters (Tb.N: ρ = −0.79∗, SMI: ρ = 0.84∗).
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Figure 3.20: R2, adjR2, robR2, RMSE, and robRMSE of linear models for prediction
of Fexp.

Multiple regression analysis with failure load as dependent variable

S1 or F1 S2 S3 S4 F2 F3 F4

BMD < 0.0001∗ 0.0002∗ 0.0002∗ 0.0007∗ BMD < 0.0001∗ < 0.0001∗ < 0.0001∗

MIL 0.188 0.043∗ 0.095 FD1.SD 0.015∗ 0.0008∗ 0.0005∗

BS/BV 0.053 0.151 FD2 0.011∗ 0.018∗

TMD 0.213 fRV2/BV 0.036∗

AICc 2.813 4.123 3.172 5.830 AICc −1.139 −5.900 −7.478

Table 3.4: P-Values of the predictors (∗p < 0.05) and total AICc obtained from op-
timal models for prediction of Fexp with and without incorporating fractal methods.

Table 3.4 and Fig. 3.20 show multiple linear regression models to explain the

variability of Fexp. The first set (S1 to S4) was based on BMD and (not fractal)

standard parameters, the second set (F1 to F4) was based on BMD and fractal

parameters. The indices of the model names indicate the number of used predictors.

Although the actual predictors were chosen independently as the combination that

minimizes the AICc, the best models contained always all predictors of the best

preceding models (for instance S4 = S3+TMD). The highest simple correlation with

Fexp was obtained by BMD (S1 = F1 : adjR2 = 0.684, robR2 = 0.634, robRMSE =

0.231, AICc = 2.81). The AICcs indicated a significant gain of information by F2−4

compared to S1−4. Model F2 with BMD and FD1.SD(adjR2 = 0.782, robR2 = 0.736,
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robRMSE = 0.197, AICc = −1.14) obtained already higher correlations and lower

errors than all S-models. Adding additionally FD2 as a predictor (model F3: adjR2 =

0.861, robR2 = 0.801, robRMSE = 0.171, AICc = −5.90) significantly raised the

gain of information towards standard models (p(F3 vs. S1−4) = 0.003∗−0.013∗). The

optimum model was obtained by adding fRV2/BV as a further predictor (model F4:

adjR2 = 0.897, robR2 = 0.847, robRMSE = 0.150, AICc = −7.48), yielding a

significant gain of information towards S1−4(p(F4 vs. S1−4) = 0.001∗ − 0.006∗) and

F2 (p(F4 vs. F2) = 0.042∗). P-values of the parameter estimates (Tab. 3.4) showed

significant contributions of all fractal parameters to the F-models while standard

parameters, with exception of MIL in model S3, did not contribute significantly to

the S-models.

When allowing only parameters obtained with the first fractal method, the pre-

dictors FD2 and fRV2/BV of models F3 and F4 have been replaced by FD1 and

fRV1/BV. These models with three (adjR2 = 0.844, robR2 = 0.771, robRMSE

= 0.186, AICc = −3.97) and four predictors (adjR2 = 0.891, robR2 = 0.833, ro-

bRMSE = 0.157, AICc = −6.48) were not significantly different to the models F3

and F4 based on both fractal methods. Models, based on the Bayes information

criterion were identical to these selected with the AICc.

3.5.4 Discussion

Compared to standard microstructural parameters, the fractal methodology im-

proved the prediction of failure load and showed robustness against image noise.

In particular FD.SD, FD, and fRV/BV demonstrated to be well adjusted for the

analysis of HRQCT volumes. Prediction of the failure load with standard mi-

crostructure parameters can explain up to 86% of the variability in vertebral failure

load, for instance, by using a linear model of BMD, SMI, and DA on HRpQCT

(isotropic resolution 82µm)[140]. However, such a predictive power has not been

observed before on HRQCT due to the high sensitivity of noise of standard mi-

crostructural parameters. Regression models with standard structural parameters

(S2−4) were not able to extract additional information of Fexp. Conversely, the frac-

tal model F3, based on BMD, FD1.SD, and FD2, explained 86% (adjR2) of the

vertebral failure load on in-vivo-like image conditions, thus bridging the gap be-

tween ex-vivo and in-vivo. Model F4, based on BMD, FD1.SD, FD2 and fRV2/BV,

explained up to 90% (adjR2) of the variability of Fexp. Models F3 and F4 signifi-
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cantly improved the extraction of information beyond BMD without overfitting, as

indicated by AICc’s, robR2 and robRMSE. This highlights the different aspects of

bone quality captured by the set of fractal parameters. The results also showed

that the same fractal parameters obtained with either of the both fractal meth-

ods were nearly redundant as they did not add independent information in any

linear regression model and also showed high Spearman’s rank correlations (FD:

ρ = 0.96∗, FD.SD: ρ = 0.94∗, fRV/BV: ρ = 0.97∗). Thus, for the prediction of

failure load, one could simply implement the first fractal method rather than both

methods, explaining 84% (adjR2) with the model of three and 89% with the model

of four predictors. Robustness against image degradation is particularly important

for in-vivo microstructural parameters. Precision or reproducibility (STP) is im-

portant to derive longitudinal skeletal changes. Accuracy or trueness (LTP), on

the other hand, reflects robustness against inhomogeneous settings (different pro-

tocols, scanners) and defines, in particular, the ability to translate results from

phantom- to patient-studies[40]. In this study, both the accuracy and precision of

the structural information improved if computed with fractal methods. In partic-

ular, fTb.Th improved the accuracy of Tb.Th though still significantly correlated:

ρ(fTb.Th,Tb.Th) = 0.75∗. The parameters fRV/BV and FD improved the accu-

racy of SMI. However, in contrast to fRV/BV and FD, SMI generally measures

the convexity of the trabecular bone rather than its structural model [115]. This

might explain the weak correlations between SMI and the related fractal parameters

(FD1 : ρ = −0.48∗, fRV1/BV : ρ = 0.51∗,FD2 : ρ = −0.29, fRV2/BV : ρ = 0.35).

Results of fRV/BV (mean: 29%, SD: 6.4%) showed agreement with an alterna-

tive parameter of RV/BV on HRpQCT resolution [75] (mean: 17.5%, SD: 6.9%).

This indicates the inadequacy of the strict parallel plate model in the vertebral do-

main. High correlations with Fexp were only obtained with BMD (ρ = 0.84∗) and

FD.SD (ρ = 0.71). The BMD was not correlated with the fractal parameters FD

(ρ = 0.0 − 0.06), FD.SD (ρ = 0.21 − 0.29), and fRV/BV (ρ = 0.0 − 0.05), while

BMD and all of these fractal parameters contributed significantly to the prediction

of Fexp in model F2−4. Hence the fractal parameters are able to characterize the

failure load from the bone microstructure rather than from the bone density, as ob-

tained with BMD. In general, unless one defines a mathematical mapping between

hidden fine scale structural information and visible coarse scale information, high

noise and low effective in-vivo resolution (500× 500× 650µm3)[71] impedes ability
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to obtain failure load from the bone in in-vivo HRQCT volumes. Self-similarity,

the property to extrapolate structural information from coarse to fine scale, makes

fractal methods robust against low resolution and image degradation due to noise.

Scale invariance and thus, accuracy, applies almost completely to fractal methods,

but not to standard microstructural parameters. Most algorithms of microstructural

parameters require a crisp threshold which discards a great portion of the contained

information. In contrast, the fractal methods proposed here not only allow the ap-

plication of a crisp threshold, but also the application of a sigmoidal fuzzy threshold.

Nevertheless, the conducted experiments required the choice of a crisp threshold for

the purpose of a fair comparison between fractal and standard parameters. The

threshold was individually adapted from the histogram to remove most correlations

of the microstructural parameters with BMD [48]. Alternative tests with global

thresholds of 150, 200, and 250 mg/cm3 showed less performance on the standard

microstructural parameters, which means higher correlation with BMD and lower

ability to predict the failure load.

Finally, some alternative uses can be drawn from the method proposed here. Lo-

cal qualitative indicators of bone health FD1(~x), FD2(~x) and fTb.Th(~x) (Fig. 3.17)

could be beneficial for the segmentation of multiple myeloma [12, 13], or to extend

the local information of finite element models [80, 20]. Furthermore, replacing the

input volume with a skeletonized version of the bone[71] likely improves the esti-

mation of FD1(~x) and FD2(~x) but however, impairs the estimation of fTb.Th(~x).

Conversely, since skeletonization is a complex task in 3D, as noise and uncertainties

need to be carefully treated without removing the relevant plates and rods, this

adjustment might be only reasonable on HRpQCT.

3.5.5 Conclusion

The new fractal method proposed for the analysis of clinical 3D QCT and HRQCT

volumes computes the RV/BV and Tb.Th. It does not require a well-defined skele-

ton, and is applicable with fuzzy threshold functions. Precision and accuracy tests

demonstrated that the method can withstand image noise from in-vivo conditions.

The fractal measurements outperformed most of the microstructural parameters in

precision (STP) by as much as 20% − 45% (MIL, Tb.Sp, Tb.Th). The accuracy

(LTP) of fractal parameters FD and fTb.Th was almost as high as that of BMD or

BV/TV. On the ex-vivo human vertebrae, HRQCT-based linear prediction models of
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the failure load improved significantly by using fractal rather than standard predic-

tors, and can exceed the quality of reported predictive models of ex-vivo HRpQCT

resolution [140]. Thus, application of fractal methods may grant further insight into

the study of bone quality in-vivo when image resolution and quality are less than

optimal for current standard methods.

3.6 Local Texture Descriptors on Diffusion Mag-

netic Resonance Imaging of the Brain

The material of this section has been published in the International Journal of Com-

puter Assisted Radiology and Surgery [133] and aims to demonstrate the application

of the local operators. Since the direct evaluation of local operators on CT images

of the vertebra is difficult, this section handles instead brain DTI imaging where

the voxel-wise evaluation is a standard approach. This allows a direct evaluation of

the local texture operators without the need of performing any post-hoc aggregation

with global parameters.

Descriptors extracted from magnetic resonance imaging (MRI) of the brain can

be employed to locate and characterize a wide range of pathologies. Scalar measures

are typically derived within a single voxel unit, but neighborhood-based texture

measures can also be applied. In this chapter a new set of descriptors is proposed

to compute local texture characteristics from scalar measures of diffusion tensor

imaging (DTI), such as mean and radial diffusivity, and fractional anisotropy.

Weighted rotational invariant local operators are employed, namely standard de-

viation, inter-quartile range, coefficient of variation, quartile coefficient of variation,

and skewness. Sensitivity and specificity of those texture descriptors were analyzed

with tract-based spatial statistics of the white matter on a diffusion MRI group study

of elderly healthy controls (HC), patients with mild cognitive impairment (MCI),

and mild or moderate Alzheimer’s disease (AD). In addition, robustness against

noise has been assessed with a realistic diffusion weighted imaging phantom and the

contamination of the local neighborhood with gray matter has been measured.

The new texture operators showed an increased ability for finding formerly un-

detected differences between groups compared to conventional DTI methods. In

particular, the coefficient of variation, quartile coefficient of variation, standard de-

viation and inter-quartile range of the mean and radial diffusivity detected significant
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differences even between previously not significantly discernible groups, such as MCI

vs. moderate AD and mild vs. moderate AD. The analysis provided evidence of

low contamination of the local neighborhood with gray matter and high robustness

against noise.

The local operators applied here enhance the identification and localization of

areas of the brain where cognitive impairment takes place, and thus indicate them

as promising extensions in diffusion MRI group studies.

3.6.1 Introduction

Diffusion MRI is predominantly interpreted as a modality to estimate the spatial

distribution of the diffusion of water molecules [8]. One common diffusion MRI

model is diffusion tensor imaging (DTI), which describes the tensor of the diffusion

directions. DTI found numerous applications in the study of neurosurgery [73],

psychiatric [72] and neurological disorders [126], and is most commonly applied on

the white matter (WM) of the brain [55] where water tends to diffuse preferentially

parallel to fiber tracts because the myelin sheath and cell membranes impede the

diffusion perpendicular to the direction of the axons. Given that the diffusion tensor

is a mathematical entity whose comparison and interpretation is not straightforward,

most DTI group studies rely on scalar measures which encode different rotationally

invariant properties of the original diffusion tensor.

The most commonly employed measures are fractional anisotropy (FA) and mean

diffusivity (MD) [119]. Also useful for describing the diffusion are radial and axial

diffusivity [17], linear measure, tensor mode [27] and others [7, 31, 94]. The choice

of suitable scalar measures is a critical step for DTI analyses, as their robustness to

noise, or sensitivity and specificity to the pathological condition (i.e. ability to dis-

criminate healthy from diseased patients, or between patients with different disease

states) have a key role in the performance of the studies.

Most of the literature related to the derivation of new DTI scalar measures has

focused on the behavior of different anisotropy measures with respect to noise. It

is worth to note that most of the recently proposed anisotropy indices have similar

contrast-to-noise ratio than FA [65, 139]. Only few DTI methods, which incorpo-

rate a local neighborhood, have been described. The lattice index [104] measures

the similarity of the predominant diffusion directions on a local weighted neighbor-

hood in 2D. The inter-voxel local diffusion homogeneity [44] uses an unweighted 3D
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neighborhood. The local diffusion homogeneity might be sensitive to age-related

changes in WM but less robust than MD or FA against motion artifacts in the MRI

acquisition process [69]. Neither of these methods is rotational invariant.

The aim of this section is to present new DTI descriptors to improve the identifi-

cation of subtle differences of the integrity of the white matter architecture between

healthy and diseased brains (dementia, multiple sclerosis, stroke, aging etc.). Our

hypothesis is that well defined texture operators, attached to existing scalar mea-

sures, can improve the identification of differences of the white matter architecture

between patients with different levels of cognitive impairment. A new set of image

filtering methods is proposed that operates directly on traditional scalar measures

using rotationally invariant weighted local descriptors (average, standard deviation,

coefficient of variation, skewness etc.) to improve the discriminative power and ro-

bustness against noise. These statistical descriptors are inter-voxel in nature and

may extract additional texture information that was not revealed by the original

scalar measures, allowing to localize formerly undetected areas and opening a door

to new viewpoints for the analysis of neuronal pathologies.

For the evaluation of the texture operators, the performance with a real-world

DTI group study is analyzed, instead of indirectly assessing the sensitivity and

specificity to disease by means of the ability to distinguish between different types

of brain tissue. An Alzheimer’s disease (AD) study with four distinct cohorts has

been chosen and the final analysis has been restricted to three input scalar measures

MD, RD and FA, which were shown to differentiate well on AD [119]. Tract-based

spatial statistics (TBSS) are employed as they have become widely accepted for such

analyses [125]. In addition, the overlap of the neighborhood with gray matter has

been analyzed and the performance of the local operators with respect to Rician

noise has been examined.

3.6.2 Materials and methods

For the separate evaluation of each anatomical entity with TBSS, the following image

processing steps are performed, Fig. 3.21: DTI is estimated from DWI volumes and

thereafter the traditional single-voxel scalar measures (MD, RD or FA) are derived.

Now, the inter-voxel descriptors are computed from the scalar measures using a local

weighting mask. The final steps are the registration of the single- and inter-voxel

measures to a standard atlas space and the projection to the registered WM skeleton,
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Figure 3.21: DTI scalar measures (MD, RD or FA) are filtered with weighted local
inter-voxel operators (∗). Then they are registered to atlas space and projected to
the WM skeleton, allowing to derive statistical comparisons between patients.

which is derived from FA. The following subsections review the traditional scalar

measures Sec. 3.6.2, the proposed inter-voxel operators Sec. 3.6.2 and the conducted

experiments, Secs. 3.6.2 and 3.6.2.

Scalar measures

The definitions of the scalar measures that were employed in this section are briefly

revised. Given a diffusion tensor and its three eigenvalues λ1 ≥ λ2 ≥ λ3, the Mean

Diffusivity is a measure of the total amount of diffusivity

MD = λ =
λ1 + λ2 + λ3

3
. (3.107)
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The Radial Diffusivity, on the other hand, measures how much diffusivity remains

perpendicular to the main diffusion direction

RD =
λ2 + λ3

2
, (3.108)

and the Fractional Anisotropy measures how much the diffusion deviates from

isotropy

FA =

√
3

2

√
(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2√

λ21 + λ22 + λ23
. (3.109)

The following additional scalar measures were computed but finally discarded as

they did not add much information with respect to the ones described in this work:

linear, planar and spherical measure [141], anisotropy and elongation index [10] and

an operator describing the DTI ellipsoid in terms of being oblate or prolate [138].

Local inter-voxel operators

Linear and non-linear local inter-voxel texture operators are computed. Both in-

corporate the Gaussian weighting mask NGauss
k (Sec. 3.2.1) and a binary volume

of interest VOI, containing ones inside and zeros outside the brain. The weighting

mask is rotationally invariant and monotonic decreasing from the center voxel, and

thus minimizes remote influences of potential gray matter voxels within the neigh-

borhood. To compute meaningful 3D information, the mask must contain at least

three non-trivial voxels in each direction but must be small enough not to contam-

inate the texture information with gray matter voxels. Formulas for the linear and

non-linear operators were introduced in Sec. 3.2.2. Since all of these parameters use

the same mask NGauss and the same VOI, they are simply abbreviated as AVG(~x)

of s or SD(~x) of s instead of AVGNGauss(s,VOI; ~x) or SDNGauss(s,VOI; ~x) etc. The

following six scalar measures were computed,

• the weighted average AVG(~x),

• the weighted standard deviation SD(~x),

• the weighted coefficient of variation CV(~x),

• the weighted standardized skewness SKW(~x),

• the weighted inter-quartile range IQR(~x) and
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RAW AVG SD IQR CV QCV SKW

FA
R
D

M
D

Figure 3.22: DTI measures obtained from a healthy patient (voxel size 1.015 ×
1.015× 3mm3, matrix is cropped to 131× 162 voxels) obtained with NGauss

4mm (mask
size 7 × 7 × 3). Rows: MD, RD and FA. Columns: single-voxel measure (RAW)
and inter-voxel operators average (AVG), standard deviation (SD), inter-quartile
range (IQR), coefficient of variation (CV), quartile coefficient of variation (QCV)
and skewness SKW).

• the weighted quartile coefficient of variation QCV(~x)

Additionally, the empty identity operator of the signal s is denoted as RAW

RAW(~x) = s(~x). (3.110)

Figure 3.22 shows axial views of all scalar measures (RAW) and inter-voxel operators

for a certain sample case. AVG contains the smoothed information of RAW. The

parameters IQR and QCV represent non-linear counterparts of SD and CV. SD

and IQR emphasize areas with a high local gradient similar to their scale invariant

counterparts CV and QCV. The third moment SKW reveals different information

than the other operators, which becomes visually apparent in the case of MD and

RD. However, SKW FA equals to a certain extent the CV and QCV of FA. The

weighted standardized kurtosis was derived in a similar manner to the other linear

operators, but later excluded due to its weak sensitivity and specificity against

changes in the pathology.



102 CHAPTER 3. ROBUST PARAMETERS

Analysis of diagnostic performance

A DTI group study with four age adjusted cohorts was analyzed (N = 58 patients).

The study contained healthy controls (HC: N = 19, age = 74.05, SD = 0.88y),

patients with mild cognitive impairment (MCI: N = 12, age = 76.33, SD = 1.11y),

patients with mild Alzheimer’s disease (Mild AD: N = 20, age = 76.30, SD = 0.86y)

and patients with moderate Alzheimer’s disease (Mod AD: N = 7, age = 76.57, SD

= 1.45y). Raw diffusion weighted images (DWIs) were acquired with a GE Signa

1.5 T MRI unit at QDiagnóstica radiological facilities in Valladolid, Spain. The

parameters of the acquisition protocol were the following: 25 gradient directions,

b=1000s/mm2, one baseline volume, voxel size 1.015 × 1.015 × 3mm3, TR=13s,

TE=85.5ms, 256× 256 matrix, NEX=2 and 39 slices covering the entire brain.

The DWIs were linearly registered to the baseline volume to account for possible

minor motion artifacts. Then, they were processed with an algorithm based on the

Otsu threshold [96] to remove the image background as well as non-brain structures

such as the skull. Diffusion tensors were estimated using a least squares method [116]

and the image quality was individually checked on the tensor volumes using color by

orientation maps. From the tensor volume, the scalar measures and local operators

were computed (NGauss
4mm , mask size 7×7×3) and TBSS analysis [125] was performed

using FSL 4.1 (FMRIB software library, http://www.fmrib.ox.ac.uk/fsl [60]).

By using this methodology, FA volumes were non-linearly registered to the MNI 152

standard space (voxel size 1 × 1 × 1mm3 [45]). Then, a WM skeleton was created

from the thresholded mean FA map (FA ≥ 0.2). Finally, all original scalar measures

and the ones derived from local operators were projected onto the WM skeleton for

statistical comparisons.

Statistical analyses for TBSS were carried out using RANDOMISE, an FSL tool

that performs permutations for inference on statistical maps when the null distribu-

tion is unknown [92]. This allows to measure the precision and specificity, similar to

conventional tests of receiver-operator characteristics, but with increased sensitiv-

ity to differences in a specific direction [147]. Corrections for family-wise errors and

multiple comparisons with threshold-free cluster enhancement [124] were performed.

Pairwise comparisons were made for each combination of different cohorts and for all

measures (original measures and the ones proposed in this paper), and the number

of voxels for which significant differences (p < 0.05) were found among groups was

counted separately for each operator and combination of cohorts.

http://www.fmrib.ox.ac.uk/fsl
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Analysis of robustness

In order to evaluate the performance of the proposed new scalar measures with

respect to noise, noise-controlled DTI volumes were employed based on a realistic

phantom. Following the approach described in [135], a real dataset was denoised

[136] to create a ground truth with 16 gradient directions, b = 1200 s/mm2, one

baseline volume, reconstructed voxel size 0.9375 × 0.9375 × 1.7 mm3, 128 × 128

acquisition matrix zero-padded to 256 × 256 prior to reconstruction, and 81 slices

covering the entire brain. Then, the noiseless DWI (D∞) was interfered with Rician

noise of eleven different signal-to-noise ratios ranging in amplitude scale from SNR =

3.16 to SNR = 56.23. The SNR’s have been chosen to be uni-distant in (logarithmic)

decibel scale with a spacing of 2.5 dB and covering the interval [10 dB, 35 dB]. The

noisy DWI signal DSNR read:

DSNR =
√

(D∞ + η(E/SNR))2 + η′(E/SNR)2, (3.111)

where E and SNR were both expressed in amplitude scale and the expected value

E was the mean value of the noiseless DWIs. The functions η(σ) and η′(σ) were

two Gaussian random variables with zero mean and standard deviation σ. The

traditional and novel scalar measures (NGauss
4mm , 9× 9× 5 voxels) were obtained from

the resulting DTI volumes and TBSS was applied, thus obtaining a thresholded

FA skeleton (noiseless FA ≥ 0.2), over which the evolution in noisy scenarios was

analyzed. Quantitative comparisons between operators and SNRs were derived from

the normalized root-mean-square error

NRMSE(XSNR, X∞) =
RMSE(XSNR, X∞)

SD(X∞)
, (3.112)

with RMSE(XSNR, X∞) the root-mean-square error between the noisy XSNR and

the noiseless signal X∞, and SD(X∞) the standard deviation of the noiseless signal.

The normalization with the standard deviation allows for the optimum comparison

between the different tested operators: it does not require ratio variables (in contrast

to a normalization with the mean) and is robust against outliers (in contrast to a

normalization with the range). In particular the variables FA RAW and AVG on the

white matter and SKW require this kind of normalization. Since the measures SNR
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Figure 3.23: Number of significant different TBSS voxels (N = 91, 050, p < 0.05,
corrected for multiple comparisons) between HC vs. Mild AD (top left), HC vs.
Mod AD (bottom left), MCI vs. Mod AD (top right) and Mild AD vs. Mod AD
(bottom right). The subset of voxels which were also identified by conventional
measures (RAW of MD, RD or FA) is shaded black.

and RMSE express amplitude ratios, the transformation to dB scale was performed

with the formula for root-power quantities.

The analysis of the contamination with gray matter was obtained from all 58

patients of the AD study. A histogram was computed of the minimum amount of

white matter in the neighborhoods of the TBSS. The proposed mask NGauss
4mm was

compared with three different unweighted 3× 3× 3 masks used for the computation

of the inter-voxel local diffusion homogeneity [44]: the neighborhood NVox
27 contained

all 27 voxels, while the other contained only voxels sharing an edge (NVox
19 ) or side

(NVox
7 ) with the center voxel.

3.6.3 Results

Analysis of diagnostic performance

No significant differences were found between HC vs. MCI or between MCI vs. Mild

AD. Except for FA RAW and AVG, parameters between other cohorts increased

with progressing dementia: HC < Mild AD < Mod AD and MCI < Mod AD. None

of the parameters contained significantly increased and decreased areas at the same

moment. The traditional measures (RAW or AVG) found significant differences only
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RAW.

between healthy patients and those with AD, while the inter-voxel texture operators

additionally located changes at MCI < Mod AD and between the two AD cohorts

(Mild AD < Mod AD), Fig. 3.23.

The application of the operators to MD and RD followed a widely similar pattern,

both, in regard to the number and in regard to their spatial distribution. With

regard to MD, SD and CV discriminated on four pairs, while the other operators

only at three (IQR and QCV) or two pairs of groups (AVG and SKW). MD SD

and CV detected similar locations, however MD CV revealed stronger indications

of impairments between Mild AD and Mod AD on the sensory cortex and parietal

lobe, Fig. 3.24. The application of higher order moments (SD, CV, SKW) on FA

did not improve the diagnostic performance of FA AVG.

Analysis of robustness

Most of the local operators had higher robustness against noise than the single-voxel

RAW operator, Fig. 3.25. The noise characteristics obtained on MD and RD were

very similar. Applied to MD or RD, AVG increased the robustness against noise

constantly by a factor of 1.8, while FA AVG increased the robustness depending on
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Figure 3.26: a) Histogram of neighborhoods on the WM-skeleton that contain a
minimum amount of WM for masks NGauss

4mm , NVox
27 , NVox

19 and NVox
7 , b) spatial dis-

tribution of the WM share of NGauss
4mm (color coded from 50%− 100%).

the SNR by up to factor of 4, compared to RAW. Also the local texture operators of

MD and RD were more robust than RAW, with the exception of SD for high SNRs

and SKW for low SNRs. The robustness against noise of MD/RD CV, QCV and for

high SNRs of SKW increased by a factor 1.8 to 2.2, exceeding also the robustness

of MD/RD AVG. If applied to FA, SD and CV were only robust for high SNRs

(2.2 and respectively 1.6 times of RAW), while IQR, QCV and SKW were rather

sensitive to noise.

The comparison of NGauss
4mm with unweighted 3× 3× 3 neighborhoods NVox

27 , NVox
19

and NVox
7 is shown in Fig. 3.26. Although the spatial dimension of NGauss

4mm exceeded

the one of the unweighted neighborhoods, its contamination with gray matter was

still low: approximately 92% of all neighborhoods were at least to 90% in WM.

Furthermore, NGauss
4mm contained more neighborhoods with a minimum white matter

share of 93%(NVox
27 ), 80%(NVox

19 ) and 65%(NVox
7 ), respectively.

3.6.4 Discussion

The experimental work performed here focused on the analysis of two important

aspects: the ability to discriminate between pathological conditions in a group study,

and the evolution with varying SNR. With regard to the first one, results showed

that some of the proposed local inter-voxel operators highly increased the ability to

differentiate between groups. Concerning the second one, most parameters obtained
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high robustness against noise, some texture operators even exceeded the robustness

of AVG.

A DTI data set with multiple stages of Alzheimer’s disease was selected as an

experimental benchmark because it allowed to quantify the potential gain of the

new operators. Indeed, new differences between groups arose when employing the

proposed approach, which is a strong advantage over traditional measures.

In particular, the texture parameters SD, CV, IQR and QCV, if applied on MD

or RD, exceeded the performance of RAW and even AVG. For instance CV and QCV

obtained both, higher robustness to noise and higher discriminative potential than

AVG. When considering noise and discriminative analysis together, local texture

parameters of MD and RD were more adequate for the conducted AD-group studies

than those based on FA. AVG was the only non-texture and standard DTI-operator

among the proposed ones, since weighted averaging is commonly employed in voxel-

based morphometry [4] and TBSS [125]; it obtained high robustness to noise, but

was, unlike other texture parameters, unable to reveal differences between MCI vs.

Mod AD or Mild AD vs. Mod AD.

In general, also alternative statistical analyses could be performed, such as the

general voxel based (VBA) or atlas based analysis (ABA), which do not require

skeletonization of the WM [95]. However, TBSS analysis was used in this application

because of two reasons. First, as TBSS is a widely employed DTI analysis tool

[144], it facilitates the interpretation and comparison of the results among other

approaches. Second, since TBSS centers the neighborhoods on the WM skeleton, it

minimizes any contamination with gray matter.

Still, the mask size must be selected carefully according to the spatial resolution.

If the mask exceeds noticeably the distance from the WM skeleton to gray matter

voxels, local features become mainly dependent on changes in local morphometry,

which decreases the discriminative power particularly at the boundaries of the WM.

In terms of contamination with gray matter, NGauss
4mm contained similar characteristics

than the unweighted reference masks, while being advantageous in terms of sample

size and isotropy: in contrast to NGauss
4mm , the reference masks NVox

27 , NVox
19 and NVox

7

are anisotropic (3×3×9mm3) and thus favor longitudinal fiber tracts over transversal

or sagittal ones.

The interpretation of the results may be difficult compared to traditional mea-

sures, which is a common issue of inter-voxel operators [44]. Differences in traditional
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scalar measures, such as FA, have been often related to physiological changes in the

WM tissue (demyelination, lower packing density or different membrane permeabil-

ity, among others) [68]. However, changes in FA, MD or RD can be motivated by

very different mechanisms within the tissue, which makes bold interpretations of

changes in the WM integrity, although very common, possibly flawed [61]. The use

of the proposed local operators, on the other hand, can open a door to new view-

points for the analysis of pathologies. For instance MD CV uncovered a progressing

impairment from mild to moderate AD of brain areas, which are commonly related

to sensations (sensory cortex), perception, spelling and arithmetic (parietal lobe).

These impairments remained hidden on standard parameters (RAW and AVG).

The application of inter-voxel operators is not committed to DTI, but could

be applied to any scalar measure. In particular, the application to Q-Ball scalar

measures from high angular resolution diffusion imaging might be investigated, for

instance the generalized anisotropy [97], generalized fractional anisotropy [137] or

fractional multi-fiber index [37]. Studies with with higher spatial resolution than

the one employed here could achieve improvements regarding the robustness and

localization of pathological areas. The Matlab code with a sample script, that com-

putes the local operators, is available at members.imaglabs.org/felix.thomsen/

LocalOperatorsMRI/Matlab.zip.

3.6.5 Conclusion

In this chapter new image processing methods were presented for the identification

and characterization of pathological changes in the white matter of the brain based

on DTI. Instead of deriving new scalar measures directly from DWI, existing DTI

scalar measures such as FA, MD and RD have been further processed with rota-

tional invariant inter-voxel texture operators. Each combination of existing scalar

measures and inter-voxel operators provided a novel measure with distinct and new

properties, which was in many cases more suitable than the original single-voxel

measure for particular discrimination problems of DTI studies. Compound sen-

sitivity and specificity of the inter-voxel operators was compared with the one of

traditional measures on a group study of Alzheimer’s disease. Additionally, noise

characteristics were measured with a synthetic DWI phantom and the overlap of the

local operators with gray matter was analyzed.

members.imaglabs.org/felix.thomsen/LocalOperatorsMRI/Matlab.zip
members.imaglabs.org/felix.thomsen/LocalOperatorsMRI/Matlab.zip
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Texture parameters based on MD and RD yielded the highest discriminative

power and robustness against noise and were able to identify formerly undetected

pathologies even between previously insignificant pairs of groups (MCI or Mild AD

vs. Mod AD). Thus, the results indicate that the methods are a promising extension

in DTI studies. Future work might investigate the application of the proposed

methods on group studies of different alterations of the brain (multiple sclerosis,

schizophrenia, etc.) to improve the detection and localization of these pathologies.



Chapter 4

Structural Insight

For the computation of structural parameters from CT volumes, the software Struc-

tural Insight has been developed. Parts of this chapter have been presented in 2016

at the Argentine Congress of Informatics and Health in Buenos Aires [131]. Further-

more, the software has been used for a number of publications over the last years

[12, 13, 20, 41, 102, 130, 132]. This third mayor version of the software resembles

most features of its previous version [46, 71] but with important additional function-

ality, that will be described here in detail. Figure 4.1 shows the three mayor versions

and their main developers. Since 2014 the software is maintained by Timo Damm,

who continued with the recently developed version 3. Version 1 had mainly the pur-

pose to provide the research environment for the scientific work of Wolfram Timm,

version 2 was already a software that provided sufficient comfort to be used by ex-

ternal users. However some mayor design issues and not solvable bugs, including

compiling errors, induced to develop the version 3. Mainly all functional concepts

from version 2 entered in version 3, which follows internally a more categorical mod-

ular programming style, allowing for easier extension. The functional concept of

Structural Insight is to provide all necessary methods and steps for the computa-

Timo Damm 
Version 1 Version 2 Version 3

Version 3.1

Wolfram Timm Christian Graeff Felix Thomsen

2005 2010 2015

Figure 4.1: Timeline of Structural Insight containing versions and main developers.
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tion of structural parameters from raw CT volumes of any resolution and modality.

This includes the mayor steps quality assurance, calibration, segmentation, regis-

tration and analysis. The software is written in C++ using the libraries Insight

Segmentation & Registration Toolkit ITK (www.itk.org) and Qt (www.qt.io).

4.1 Purpose and workflow

The software Structural Insight provides a all-in-one software to parse, visualize and

analyze CT data as generated by commercial clinical or pre-clinical CT scanners.

Other software packages exist, that contain similar functionality, some are listed

below:

• VolView (http://www.kitware.com/opensource/volview.html) is a soft-

ware, specialized to the visualization of 3D data rather than to the compu-

tation of structural parameters. It offers a wide range functionality, such as

volume rendering or multiple projections on the same screen and is based on

ITK

• Slicer (https://www.slicer.org) is a software with a similar idea than

Structural Insight, thus provides functions for the visualization and analy-

sis of 3D medical data. It is as well based on ITK and provides besides the

processing of CT volumes also a large number of functions for the processing of

MRI volumes. It is similar to ImageJ based on Add-ons, where the program-

ming of own Add-ons is faster and better managed than in the case of ImageJ,

however the data-base of the Add-ons contains unfortunately a large number

of buggy add-ons, or of add-ons, which require a certain size of RAM or a

specific GPU. In contrast to Structural Insight or BoneJ, the most standard

structural CT parameters are not yet implemented.

• ImageJ (http://imagej.net) is a multi-purpose image- and volume-editing

software, which is not only designed for medical imaging. It can read a large

number of 2D and 3D images, such as e.g. DICOM volume and provides

add-ons for distinct types of analysis and visualization. The visualization is

however not as comfortable as in the case of VolView, Slicer or Structural

Insight. ImageJ is not specific for the analysis of CT volumes and thus does

not provide the entire required functionality and productivity.

www.itk.org
www.qt.io
http://www.kitware.com/opensource/volview.html
https://www.slicer.org
http://imagej.net
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• BoneJ (http://bonej.org) is an add-on of ImageJ and provides a number

of routines for the computation of structural parameters. It is designed for

either for researchers than for practical radiologists. It has some restrictions,

such it requires a number of additional scripts for the batch computation of

large scale studies and does not allow to define multiple VOIs.

Besides these open-source softwares, most CT manufacturer provide their own soft-

ware, where generally only HRpQCT manufacturers (for instance Scanco or Bruker-

SkyScan) provide the micro-structural parameters, but all provide a certain vol-

ume viewer. Furthermore, certain radiology institutes developed their own in-house

software (for instance the institute of Medical Physics at the Friedrich-Alexander-

University Erlangen-Nürnberg http://www.imp.uni-erlangen.de/). The differ-

ence of Structural Insight in relation to the mentioned software packages is its speci-

ficity for the application of HRQCT studies and the simplicity such that practical

radiologists can use the program without long training sessions. Since the used ver-

sion of Structural Insight was written by the author of the thesis, specific improve-

ments of standard techniques were implemented and the functions were not treated

as “black-boxed” like in many commercial software packages, where the source-code

is not provided. Thus, comparisons and specific improvements of structural param-

eters could be optimally analyzed. The minimum workflow for processing DICOM

volumes with Structural Insight is as follows:

• Quality assurance: The DICOM volumes generated with the commercial

scanners (Siemens, Phillips, Scanco) are parsed into a common internal for-

mat. This is important, because the DICOM format is vaguely defined, many

manufacturer-specific differences exist and the very same parameter can be

expressed in different fields in the meta data. Then, the parsed meta data and

the volume is displayed for the radiologist and stored in a normalized DICOM

format, see alsohttps://www.youtube.com/watch?v=Bpsiyd1uZwA.

• Visualization: Structural Insight provides functions to visualize the 3D data,

that is important to extend the a-priori quality assurance but as well for

a a-posteriori analysis of outliers and is essential for the calibration, seg-

mentation and registration steps, see https://www.youtube.com/watch?v=

0rGGtb453iI.

http://bonej.org
http://www.imp.uni-erlangen.de/
https://www.youtube.com/watch?v=Bpsiyd1uZwA
https://www.youtube.com/watch?v=0rGGtb453iI
https://www.youtube.com/watch?v=0rGGtb453iI
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• Calibration: The DICOM volumes are calibrated from HU to density units

which allows a quantitative analysis of the gray values, see https://www.

youtube.com/watch?v=uIhyBNQn7Dc.

• Segmentation or registration: The VOI is defined, which allows to com-

pute the structural parameters in the defined anatomical region. If a seg-

mentation of the VOI exists from a previous scan, the old VOI can be auto-

matically registered to the new scan. See the following videos show the han-

dling of these functions: geometric segmentation https://www.youtube.com/

watch?v=4noMgi2ho2Y, template segmentation https://www.youtube.com/

watch?v=9hp7ZLgEpRA and registration https://www.youtube.com/watch?

v=JTz2JL7VmJ0.

• Computation of structural parameters: Different standard structural pa-

rameters are computed and their result is stored in a XML- text- or Excel-file

for the post-hoc analysis using statistical software like JMP, WEKA or Excel,

see https://www.youtube.com/watch?v=pwVAeEp5HfY.

Besides these functions, Structural Insight provides different volume processing

methods.

4.2 General classes and features

The program divides its functionality in specific classes, Fig. 4.2, the central class is

the InsightVolume, which contains the image and the meta data. This meta data

is visualized by the class MetadataViewer, while the image data is shown by the

ImageViewer class, that contains three instances of ImageFrame. Changing of pro-

jection settings can be performed by mouse-operations on the screen (ImageFrame)

or with the class ViewerSettings. The calibration is performed with the class

Calibration and the user interface is provided by CalibrationWidget. The ac-

tual calibration is not only stored temporarily but also written to the hard disk,

thus allowing to apply the same calibration to different scans, even when the cal-

ibration was performed in a older session. The characteristics of the calibration

phantom are stored in a text file PhantomSettings, which allows to extend the

applicable calibration phantoms ad-hoc. The class SegmentationWidget provides

https://www.youtube.com/watch?v=uIhyBNQn7Dc
https://www.youtube.com/watch?v=uIhyBNQn7Dc
https://www.youtube.com/watch?v=4noMgi2ho2Y
https://www.youtube.com/watch?v=4noMgi2ho2Y
https://www.youtube.com/watch?v=9hp7ZLgEpRA
https://www.youtube.com/watch?v=9hp7ZLgEpRA
https://www.youtube.com/watch?v=JTz2JL7VmJ0
https://www.youtube.com/watch?v=JTz2JL7VmJ0
https://www.youtube.com/watch?v=pwVAeEp5HfY
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Figure 4.2: A simplified diagram of Structural Insight 3.0, showing the most im-
portant classes and their internal relation. User interfaces are shaded in gray and
round boxes are data files.

functionality for the segmentation, following internal a similar principle as Cali-

brationWidget. The class Analysis performs the computation of the structural

parameters, the user can select the parameters on AnalysisWidget. The results,

an xml-table, can be visualized and stored with the class ResultTable. Additional

classes, like the InsightConsole, History and AboutWindow are designed to track

and organize the work. The Batch class allows to perform overnight-processing

of large datasets. Volume processing methods, like resampling, crop, rotation and

registration are provided by the class InsightFunctions, each with its own user

interface class. Figure 4.2 shows only the most important classes, the program con-

tains however further classes, such as a histogram, a thread-class, a number of classes
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Figure 4.3: The main screen of Structural Insight after loading a pre-segmented
volume. Functions can be accessed from the file menu or the icons.

for the template segmentation. It follows a brief summary of specific methods and

features.

4.2.1 Start screen

The start screen contains the graphical user interface, Fig. 4.3, and allows to access

all specific functions. The class ImageViewer is placed in the center and dockable

widgets are placed on the left and right of it. On the right of the screen, the class

ViewerSettings with the integrated histogram is located. By using tabs, the user

can switch to view the meta data or the console, containing the user’s last operations.

Further widgets can be accessed with the file menu or by clicking on the icons. The

icon-bar can be adjusted for user’s preferences.
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4.2.2 File formats

The class InsightVolume is the container of the CT data, while the corresponding

meta data is stored in the class Metadata. Both contain functions to read and write

the data. It reads and writes Digital Imaging and Communications in Medicine

(DICOM), Guys Image Processing Lab (gipl) and gipl gun zip files (gipl.gz), Vi-

sualization Toolkit (vtk) files and the proprietary Byte stack (bst) and Extensible

Markup Language (xml) files. The bst format was introduced in Structural Insight

1.0, and the xml format with Structural Insight 2.0 (xml) and the meta data was

extended in version 3.0. Both, xml and bst store the voxel information as a float-

bitmap without further compression. The header of the bst files contains only few

information (dimension, resolution, birth date) while the xml files contain the most

important information from the DICOM header and information regarding the cal-

ibration and segmentation. If a volume was segmented, a second file is generated,

which allows to assign up to 255 distinct VOIs per volume (1 byte/voxel). Storage

of the segmentation is only possible in .bst and .xml format. The slices can also

be exported in portable network graphics format (png), lacking however the header

information. Screenshots can be stored as bitmap (bmp), png, portable pixmap

(ppm), X PixMap (xpm) or the binary format X BitMap (xbm), using a dithering

approach. The program allows also to load only 2D projections, the maximum- and

mean-projection is directly computed when the volume is opened, or to open the

meta data without the corresponding volumes, which is particularly useful if the

volume is very big and just details of the meta data need to be assessed.

4.2.3 Visualization

The class ImageViewer shows the volume data. Since Structural Insight shows

concurrently 3 projections, the low-level image processing is located in the class

ImageFrame containing these projections. The class manages mainly the interac-

tion between the three instances of ImageFrame and between other classes. The

ImageFrame class contains the low-level image processing routines to perform a set

of different projections: The standard slice projection, a mean, a maximum, a min-

imum, a standard deviation and a standard deviation by range projection, further-

more a depth-map projection and a volume rendering with ray-casting, see Fig. 2.2.

These projection exist as global (full) and local variants, starting either from the first
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slice or from a particular point in the volume, and they are applicable in every di-

rection, rather to be only aligned to the x-y- and z-axis. The class ViewerSettings

contains all fields to adapt the projection settings, some of its functions are also

accessible from ImageFrame. The colormap and the opacity settings for the volume

rendering manipulated here. It also contains the list of VOIs and a histogram of

the active VOIs. The MetadataViewer is similar to ViewerSettings and shows the

entire meta data of the InsightVolume. It allows to change particular data, for

instance the patient’s or study name.

4.2.4 General volume processing functions

The class InsightFunctions contains some image processing functions: crop, re-

sample, rotate, blur, invert, morphological filtering including a median filter and

energy minimization with a Monte-Carlo model. Two other important functions are

implemented in the class Registration, which applies a non-deformable registra-

tion between two scans of the same vertebra, the rotation and translation matrix can

then either be applied to the volume data, meaning that the density voxels of are

processed (rotated, translated and resampled) or to the mask data, meaning that

the VOIs are redefined to match the VOIs of the destiny volume. This functions

were introduced in Structural Insight 3.0 and provide an important tool if the study

data contains more than one scan per specimen. In this case, the first segmentation

is performed with the standard segmentation classes, while the further ones are au-

tomatically registered to the first one, allowing the most accurate definition of all

scans. The registration of the voxels can be used to map the further scans to the

atlas of the first which allows for instance to derive an average or median volume

serving as a denoised or ground truth representation of repeated scans. The result

of the registration can be controlled with a checkerboard image, which overlays the

registered and the destination volume. Specific settings of the registration are loaded

from a text file which can be adjusted by the user.

4.2.5 Threads

In particular computations related with the visualization are very costly, for instance

the ray-casting operation. After each change of particular settings, the entire vol-

ume must be recalculated. This can take tens of seconds of time and thus disallowed
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Figure 4.4: Two different sample schemes of the threaded computation of projections
when the read operation is very time consuming. Red circles indicate a read access
and green circles a write access, labels indicate the iteration of the last read or write
access. Both methods are scalable to every initial box-size, but the second method
generates a better accordance to the centers (imprinted crosses) and reduces the
number of read-accesses in the last iterations. Steps I, II, III and IV are identical
on both methods except for rotation and translation.
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Figure 4.5: Example of threaded rendering with method 2. This allows the user to
abort the rendering, before all pixels are processed.

the user to apply a try-and-error approach for seeking the optimum visualization

parameters. To avoid this problem, a threaded mechanism was implemented, al-

lowing to interrupt the current visualization and to show preliminary downsampled

renderings before the final resolution is available. The rendering is independently

threaded starting with rendering blocks of 32 × 32 pixels, then 16 × 16 pixels and

so forth until reaching the final screen resolution, Fig. 4.4 shows the final steps for

blocks smaller or equal 8× 8 pixels. This does not restrict the total execution time

and allows for an entirely smooth scrolling or change of projection settings since the

threaded programming allows to interrupt the rendering as soon as the projection

settings were updated, Fig. 4.5. Another application of this threaded mechanism

was applied to the histogram. The histogram is mostly not critical for the user’s
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decisions and thus should neither freeze the program. Here, the same mechanism

applies as shown in Fig. 4.4 with the difference that no write-operations are needed,

hence method 1 and method 2 are practically equivalent for the application of the

histogram. A further thread is implemented for a live-preview of threshold-free

voxel-based structural parameters (BMD, TV and standard deviation of the gray

values) in the class SegmentationWidget.

4.2.6 Further methods to increase the efficiency

The typical workflow consists of the steps quality assurance, calibration, segmen-

tation and computation of structural parameters. While in version 2, the user had

to comply this procedure for every scan, Structural Insight 3.0 allows (1) to store

any time the intermediate results, (2) to perform certain steps blindly with a batch

procedure and (3) to define different workflows.

Different workflows can be selected from a drop-down menu, such as those in-

cluding a resampling, rotation or registration. This drop-down menu is loaded from

an external text file and can be extended with a text editor. Each entry in the list of

operations opens the required tabs and closes the not needed ones, two mechanisms

are implemented, a force-mechanism automatically switches to the next step after

the current operation was executed while the wait-mechanism requires the user in-

put to do so. The workflow is designed like an audio player, containing a stop, a

play or pause and a next item, allowing to repeat or to skip the actual step.

Different types of batches are implemented. First a file containing operations and

file names can be processed, if the operations don’t require user interaction which can

be opened from the shell or after opening the program. Second, the computation

of structural parameters can be processed as a batch, thereby selecting the list

of segmented volume from the AnalysisWidget. Third, the described workflow

mechanism is a batch processing, that always halts when user interaction is required.

Important classes use a text file to store typical combinations of settings, for

instance a geometric VOI, consisting of a prototype shape, an extension in x-, y-

and z-direction and a division into N sub-VOIs can be stored as one entity and in a

later session again used, changed or deleted.
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Figure 4.6: Quality assurance allows to check for failures in the field of view, to
detect image artifacts and to check the meta data.

4.3 Core functions

The next subsections describe the minimum core steps that are required to compute

structural parameters from an input DICOM file.

Quality assurance

Generally when starting to work with image data belonging to a new study, it

is necessary to check if the meta- and image-data meet the desired requirements.

This can be either done by opening every scan separately and checking all of its

properties manually or with the quality assurance function (class CTQA). The class

CTQA, Fig. 4.6, contains a simplified variant of ImageViewer, and ViewerSettings,

designed to handle 2D images instead of 3D volumes, and an extended version of

MetadataViewer, containing not only the meta data but also the control input and

a color coding indicating a differences between the control and the real input. The

volumes are not opened in 3D mode but in a 2D mode, thereby generating the

transversal, sagittal and coronal maximum- and mean- projection. This allows to

reach a higher flow-rate and is generally sufficient to visualize systematic image
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defects. The quality of the image data is checked visually by the user while the

meta data is tested against the standard settings of each study, using again regular

expressions.

After selecting the input and output folder, all unsorted DICOM files, which are

2D slices, are opened and merged to entire 3D volumes. The eventually cryptic file

name of the DICOM files is thereby replaced by using regular expressions based on

the meta data of the files. The regular expressions are stored in an .xml file which

can be adjusted after compilation with any text editor. The quality assurance class

generates new folders for the output DICOM data of each scan. It contains also

the option to create a .pdf file of each generated 3D volume containing (1) a scout

view, (2) the most important meta data which is highlighted when violating the

regular expressions, and (3) free space for comments and (4) a space for a signature

of the person who included or excluded the current patient’s scan from the study.

This specialized class allows to seek all DICOM files in a complete file-system, to

copy them to a specific folder structure, rename and filter them. In addition, the

definition of the control input allows to perform the quality assurance by external

personnel which helps to provide a quick feedback to the radiologists for eventual

changes of their procedure.

4.3.1 Calibration

The class Calibration, Fig. 4.7, contains the functions to apply a calibration of

the CT volume. After mapping the Hounsfield units (HU) of the scans to density

values mg/cm3, the CT scans become quantitative CT scans (QCT). From these,

it is possible to derive density based structural parameters (BMD, TMD). To ap-

ply a calibration, in general two reconstructions of the scan are needed. The large

field of view (FOV) contains in particular the calibration phantom, which is placed

under the patient or specimen, while the small FOV contains the specimen in the

desired resolution. The calibration phantom contains at least 2 rods of different

known densities of a reference material. The average HU inside these rods are taken

and the linear mapping between HU and mg/cm3 is derived from a linear fit. The

derived mapping between HU and mg/cm3 is then applied to the small FOV recon-

struction. The calibration form contains all necessary functions to perform these

operations manually, once the mapping is defined from the large FOV, the parame-

ters are stored in a text file, the corresponding small FOV is opened and calibrated.
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Figure 4.7: Calibration from Hounsfield to density values. The phantom type (left
top), the position ad rotation (right) and the processing of the HU-values (left
bottom) can be adjusted.

The class contains functions to segment all calibration rods. Every scanner and

every calibration phantom has individual settings, which change over time, for that

purpose the individual calibration phantom and a field uniform correction (FUC)

for the particular date and scanner can be derived from a quality assurance scan,

containing a calibration phantom and a density phantom in the place of the patient.

These settings can then be selected for the particular patient scan. Additionally

the user can select between an individual calibration per slice or a global calibration

and it is possible to extend the procedure for further calibration phantoms, whose

characteristics are loaded from a text file.

The actual calibration is not only stored in the RAM but also in the file-system.

A calibration will be applied to the file which is next opened after creating a cali-

bration or an older calibration can be applied by opening the stored calibration file.

Structural Insight allows only to apply one calibration of the volume to avoid the

iterative application of the calibration.

4.3.2 Segmentation

The segmentation of the VOIs is performed with functions of the Segmentation-

Widget and TemplateSegWidget. The geometric segmentation, Fig. 4.8, allows to



4.3. CORE FUNCTIONS 125

VOI shape

dimensions

store/load settings

sub-divide VOI

BM
D, SD and TV

segmentate

rotation

Figure 4.8: Geometric segmentation allows to define a VOI by applying and adjust-
ing predefined geometric shapes. It also allows an ad-hoc computation of BMD and
TV.

define boxes, spheres, cylinders and Pacman-shaped VOIs. The size and rotation can

be adjusted and the VOIs can be subdivided, generating for instance 3× 3× 3 sub-

VOIs. Additionally a preview analysis containing the BMD, the standard deviation

and the total volume are computed in a threaded manner not to freeze the principal

functionality. The use of the geometric segmentation is in general sufficient for the

analysis of microstructural parameters of the spongy bone.

The template segmentation, Fig. 4.9, already existed in Structural Insight 2.0

and is detailed explained in [46]. Only few internal changes between the two versions

exist, while the principal functionality was maintained. This function defines a set of

different anatomical regions, a central ellipse, the total spongiosa, the vertical cortex,

the upper and lower endplates, foramen and pedicle. This kind of segmentation is

required for analyzing the cortex or sub-cortex, as well as for a finite element analysis.

4.3.3 Computation of micro-structural parameters

The class Analysis contains the functions for the computation of the structural

parameters, Fig 4.10. The user-interface AnalysisWidget allows to select the VOIs,

the threshold and a shrinking. The shrinking is a morphological erosion to allow
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Figure 4.9: Template segmentation: The points of the cortex are colored according
to the anatomical membership, green: vertical cortex, yellow: cut pedicle, purple:
foramen, etc. additionally the currently selected node is enhanced in red.
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Figure 4.10: Computation of micro-structural parameters: Allows peeling to define
the sub-cortex and shrinking as a morphological erosion of Bonet,σ.
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Select parameters to export

Figure 4.11: Export of the computed structural parameters: It allows to select and
to sort specific parameters. A given set of parameters for exportation can be stored
as preset.

a thinning of the bone segmentation. The sub-cortex is defined with the peeling-

parameter. The sub-cortex is an extra VOI defining the outer shell of the spongiosa.

Parameters are generally not computed on the sub-cortex, but it serves to shrink

the VOI of the spongiosa to allow a more homogenous analysis of. The sub-cortex

contains structural properties which in between the ones of the cortex and the ones

of the spongiosa. Sigma is a parameter for the definition of a non-crisp binarization,

see Sec. 2.4.2, though applicable only to some methods. The class provides the list

of implemented structural parameters and contains a batch function, that applies

the identical analysis to a set of previously segmented volumes.

For every VOI, one result entity is generated, containing the following meta

data: patient ID, date of birth (DOB), name of the study, name of the site, scan ID,

scan date, image resolution, volume of each voxel, voltage[kV], exposure[mAs], CT-

kernel, table height[mm], date and time of the segmentation, kind of segmentation,

current date and time, evaluation date, file name, current version of Structural

Insight and the complete path of the file. The structural parameters are computed

for all VOIs in the same moment loop, that means the complexity of the algorithms

is independent of the number of VOIs. The results of the analysis are shown with

the class Results, Fig. 4.11. It provides functions to select, sort and delete entries

and to export all or selected parameters to comma separated or .xml formats, which

can be then directly opened in Excel-like statistical programs.
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4.4 Implementation of the structural parameters

The following structural parameters have been implemented in Structural Insight.

4.4.1 Voxel counting

Changes of the voxel counting method include the support of float-coded densities,

instead of integer coded densities as in Structural Insight 2.0, and the support of

fuzzy bone maps. The parameters are identical to the ones, computed with Struc-

tural Insight 2.0

• bone mineral density: BMD[mg/cc]

• segmented BMD: BMDseg[mg/cc]

• bone volume: BV[cc/1000]

• total volume: TV[cc/1000]

• bone mineral content: BMC[mg]

• segmented BMC: BMCseg[mg]

• bone volume fraction: BV/TV[1].

4.4.2 Marching cubes

The marching cubes method is for the first time included in Structural Insight. The

implementation is based on [53] and follows the implementation suggested in [123].

While the standard implementation is used to derive a model independent bone

surface, it was here extended to compute the bone volume as well. Therefore a two

lists of coordinates are loaded, one containing the triangles defining the bone surface

and another containing tetrahedrons. Each vertex of the triangle or tetrahedron is

denoted by an index between 0 and 19. The first 8 indices denote the fixed corners

of the cube and the following 12 indices denote the moving edges of the cube. The

actual position of the moving edges is computed from the density of the 8 voxels, that

create each cube. While the list of the faces MCFaces.txt is already comprehensive,

the one of the tetrahedrons MCVolumes.txt is even more complex. The following

parameters can be derived
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• Structure model index: MC.SMI[1]

• Fragmentation index or trabecular bone pattern factor [47]: MC.Fr.I[1/mm]

• Bone surface in square mm: MC-BS[mm.mm]

• A bone volume based on the volume of the cubes: MC.BV[cc/1000]

• The bone surface fraction (MC.BS[mm.mm]/MC.BV[cc/1000]):

MC.BS/BV[1/mm]

• the segmented BMD: MC.BMDseg[mg/cc]

• the segmented BMC: MC.BMCseg[mg]

4.4.3 Thickness transform method

The thickness transform method was for the first time adapted to the analysis of the

spongy bone in Structural Insight and implemented as described in [54]. Parameters

are

• Trabecular separation: DT.Tb.Sp[mm]

• Standard deviation of Tb.Sp: DT.Tb.Sp.SD[mm]

• Trabecular thickness: DT.Tb.Th[mm]

• Standard deviation of Tb.Th: DT.Tb.Th.SD[mm]

• Weighted Tb.Sp, which is similar to wCt.Th[mm], but with different thresh-

olds: DT.wTb.Sp[mm]

• weighted standard deviation of Tb.Sp: DT.wTb.Sp.SD[mm]

• weighted Tb.Th: DT.wTb.Th.SD[mm]

• weighted standard deviation of Tb.Th: DT.wTb.Th.SD[mm]

The computation of the cortical thickness based on the same principle, however

by using the VOI instead of the bone map as the signal for the computation of the

distance transform. The parameters are identical to these computed with version

2.0,
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• cortical thickness based on the segmentation: Ct.Th[mm]

• weighted Ct.Th, as defined in [46]: wCt.Th[mm]

• Standard deviation of Ct.Th as defined in [54]: Ct.Th.SD[mm]

• Standard deviation of wCt.Th: wCt.Th.SD[mm]

4.4.4 Direct secant method and run-length method

The direct secant method (DSM) followed the definition of [122]. The implemen-

tation of the direct secant and run-length method are improved compared to the

algorithms of Structural Insight 2.0. In Structural Insight 3.0, the directions of

the test-rays are pre-defined, but not randomly generated as in version 2.0. The

particular directions are loaded from a text file [50]. This has the advantage, that

the test direction are covering optimally the surface of the unit-sphere and that the

methods become deterministic. Furthermore, the line-segments which overlap the

VOI but which are not entirely inside the VOI contribute only with the amount of

their intersection to the histogram. Two types of histograms are internally com-

puted, a global one containing all lengths of all line-segments, and local ones, only

considering line-segments of a particular angle. From each histogram, the mean [49]

and median [46] are computed. The following parameters can be obtained with the

direct secant method,

• trabecular number as the median of the trabecular numbers of all direction:

DSM-Tb.N[1/mm]

• trabecular separation (1-BV/TV[1])/DSM.Tb.N[1/mm]: DSM.Tb.Sp[mm]

• trabecular thickness BV/TV[1] / DSM.Tb.N[1/mm]: DSM.Tb.Th[mm]

• bone surface fraction: 2 DSM.Tb.N[1/mm]/(BV/TV[1]): BS/TV[1/mm]

• from the distribution of mean intercept lengths of all angles (MIL(θi)

= BV/TV*2/DSM.Tb.N(θi) [1/mm], the minimum mean intercept length is

computed: MIL.Min[mm]

• the average mean intercept length: MIL.Avg[mm]

• the maximum mean intercept length: MIL.Max[mm]
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• The distribution of MIL(θ1, · · · , θN) is also analyzed with a principal compo-

nent analysis, giving the first eigenvalue of MIL(θ1, · · · , θN):

MIL.Principal1[mm]

• the second eigenvalue of MIL(θ1, · · · , θN): MIL.Principal2[mm]

• the third eigenvalue of MIL(θ1, · · · , θN): MIL.Principal3[mm]

• the degree of anisotropy (MIL.Principal1[mm]/MIL.Principal3[mm]):

MIL.DA[1]

The run-length method (RLM) as defined by [46, 49] is based on a histogram of

the run-length of the bone phase histoBone(θi) and a histogram of the run-length

of the marrow phase histoMarrow(θi), separately for each angle θ. The following

parameters can be obtained,

• trabecular separation as the median of the medians of each directed marrow-

histogram MEDi(MEDθi(histoMarrow)): RLM.Tb.Sp[mm]

• trabecular thickness as the median of the medians of each directed bone-

histogram MEDi(MEDθi(histoBone)): RLM.Tb.Th[mm]

• the trabecular number from the run-length method 1/RLM.Tb.Th[mm]:

RLM.Tb.N[1/mm]

• trabecular separation as the median of the mean of each directed marrow-

histogram MEDi(AVGθi(histoMarrow)): RLM.AVG.Tb.Sp[mm]

• trabecular separation as the median of the mean of each directed bone histo-

gram MEDi(AVGθi(histoBone)): RLM.AVG.Tb.Th[mm]

• the trabecular number from the average-run-length method

1/RLM.AVG.Tb.Th[mm]: RLM.AVG.Tb.N[1/mm]

• Statistics of the median run length, computed in accordance to the mean

intercept length are the eigenvalues and the degree of anisotropy, hence the

first eigenvalue: MRL-Eigenvalue1[mm]

• The second eigenvalue of the mean run length: MRL-Eigenvalue2[mm]

• The third eigenvalue of the mean run length: MRL-Eigenvalue3[mm]
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• The degree of anisotropy of the mean run length: MRL-DA[1]

Most of these parameters are implemented in many standard software packages

(for instance BoneJ, or Bruker Sykscan CT, etc.), but in particular the parameters

of the run-length method, are only implemented in Structural Insight. The software

contains further provisional methods, based on weighted densities or fractal methods,

that were not shown in this work. The publication [130] describes some of these

experimental parameters.



Conclusions

The computation of micro-structural parameters from in-vivo CT is a field of ongoing

research. Variables of the pipeline of processing such 3D volumes are (1) the kind

of CT scanner, such as single energy or dual energy CT, (2) the reconstruction

method, such as filtered back projection or novel iterative reconstruction methods,

(3) the calibration technique, (4) the definition of the VOI, (5) the preprocessing,

such as binarization, noise reduction or upsampling methods and finally (6) the

type of methods to compute the actual micro-structural parameters. This work

concentrated on the development of novel robust methods for preprocessing and the

computation of the micro-structural variables.

Chapter 2 discussed general themes of the processing of quantitative CT data.

Different techniques for the visualization have been described in Sec. 2.1. These

techniques play an important role for the quality assurance and are important for

the manual definition of the VOI, Sec. 2.3. The calibration of the density values has

been described in Sec. 2.2. A method for the automatic placement of calibration

phantoms was developed and applied to a real study. This proposed method used

a gradient based directional weighted circular Hough-transform. A generalization

of the crisp binarization to access the bone phase has been discussed, Sec. 2.4.2.

This technique uses a second parameter σ, which reflects the fuzziness of the bina-

rization process. Furthermore, the influence of iterative reconstruction techniques

has been qualitatively described in Sec. 2.5. Finally, the most important structural

parameters were described in Sec. 2.4.

Novel approaches to improve the robustness of micro-structural parameters have

been described in Ch. 3. First, the conducted experiments to obtain the CT data

and the specific statistical methods to analyze the novel methods have been de-

scribed in Sec. 3.1 and the common definitions of the neighborhood operators were

introduced in Sec. 3.2. The general approach to obtain the ridge of the bone uses

133
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skeletonization techniques. Section 3.3 describes two alternative methods to obtain

the ridge map of the bone. In total four different applications of robust local opera-

tors were presented in the following sections, (1) to improve the preprocessing for the

obtainment of micro-structural parameters in general (2) to obtain the rod-volume

ratio in particular on junctions of rods or plates, (3) to obtain the rod-volume ratio

and trabecular thickness with the local fractal dimension and (4) an application

to diffusion tensor imaging. All of those methods contain separate discussion and

conclusion sections. The last chapter 4 describes the program Structural Insight a

software for the quantitative and qualitative analysis of CT volumes.

The independent methods and techniques of CT processing are all part of the

same process, although they might appear to be disconnected. The standard CT pro-

cessing does not need to be entirely replaced by a new processing pipeline, but certain

processing steps can be replaced or aggregated. By improving the reconstruction

method does not alter the forthcoming processing steps but increases the precision

and accuracy of the obtained micro-structural parameters. Similar principles apply

for the automatic placement of the calibration phantom, the improved binarization,

the fuzzy skeletonization with the Monogenic signal and the microstructural calibra-

tion. While a combined application of all of these techniques would likely improve

the outcome of the micro-structural parameters, in the same moment it would be

impossible to evaluate each of these techniques in terms of their contribution to the

quality of the outcome. Hence the conducted experiments did mostly not combine

any two of the proposed methods and the novel parameters were not compared in

between each other but instead towards the state-of-the art standard entities. The

program Structural Insight serves as a framework program to fix and spread the im-

plemented methods. A number of scientific works have been already conducted with

the help of this software. Hence, the long-term goal of the ongoing research is the

integration of all proposed techniques into Structural Insight, in particular to allow

the combined robust preprocessing and computing of micro-structural parameters.

Future work

Possible future work regarding each method has been throughout mentioned in Secs.

3.4, 3.5 and 3.6. In particular further investigations of the local fractal dimension

seem to be promising. The obtained results with the reported method significantly
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improves the prediction of fracture risk under in-vivo conditions and is able to ex-

plain up to 90% of the failure load. Still, the complementary proposed techniques

were not combined with this method, hence the iterative reconstruction, the fuzzy

threshold, the micro-structural calibration and the improved definition of the bone-

ridge map are likely to further boost the performance of the proposed approach.

Additionally the fractal method itself contains still adjustable parameters and set-

tings, for instance the decreasing uncertainty of the logarithm of the local bone

volume with increasing radius has not yet been involved into the method. Also the

exchange of the circular structural element with the Gaussian structural element

likely yields improved capacities to explain failure load.

The local operators which have been applied on DTI can be interpreted as a

local measure. By changing the radius of the local neighborhood, a local fractal

dimension could be established. This could allow not only to access the direction

and strength of the white matter fibers but also their structural organization, and

might be in particular helpful for the detection of tumors which force the fibers to

be organized in uncommon shapes. This extension is planned to be investigated in

the closest future.
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